llama.cpp
Find a file
xaedes f954edda93
ggml : implement backward pass for llama + small training-llama-from-scratch example (#1360)
* implement 8 of 14 missing backward pass operations used by llama

- GGML_OP_ADD_AT
- GGML_OP_CPY
- GGML_OP_MUL_MAT (src0.grad)
- GGML_OP_PERMUTE
- GGML_OP_RESHAPE
- GGML_OP_SCALE
- GGML_OP_TRANSPOSE
- GGML_OP_VIEW

implement additional ggml operation GGML_OP_ADD_AT, which is necessary for backward pass of GGML_OP_VIEW.

this operation adds src1 to src0 with data offset, i.e. to view(src0, ..., offset).
the values are return in a tensor size of src0. values outside of [data+offset:data+offset+nbytes(src1)] are just the original values from src0.

still missing backward passes for llama:

- GGML_OP_DIAG_MASK_INF
- GGML_OP_GET_ROWS
- GGML_OP_RMS_NORM
- GGML_OP_ROPE
- GGML_OP_SILU
- GGML_OP_SOFT_MAX

* implement 5 of 6 missing backward pass operations used by llama

- GGML_OP_DIAG_MASK_INF
- GGML_OP_GET_ROWS
- GGML_OP_RMS_NORM
- GGML_OP_SILU
- GGML_OP_SOFT_MAX

add necessary ggml operations GGML_OP_ADD1, GGML_OP_SILU_BACK, GGML_OP_RMS_NORM_BACK, GGML_OP_DIAG_MASK_ZERO, and GGML_OP_ROPE_BACK

GGML_OP_ADD1 is necessary to add a scalar value in the backward pass of GGML_OP_SOFT_MAX
GGML_OP_ADD1 could also be replaced by using GGML_OP_ADD and GGML_OP_REPEAT, but the performance would be worse. additionally GGML_OP_REPEAT will return unexpected value when the the input to GGML_OP_SOFT_MAX contains only a single scalar. in this case GGML_OP_REPEAT will not return the value that should be repeated (src1) but the value which shape the result should take (src0). So in this case it can not replace GGML_OP_ADD1.

GGML_OP_SILU_BACK, GGML_OP_RMS_NORM_BACK and GGML_OP_ROPE_BACK are necessary for backward pass of GGML_OP_SILU, GGML_OP_RMS_NORM and GGML_OP_ROPE. The backward pass for these functions cannot be easily composed of existing operations. Since the backward pass builds a computation graph we need operations forward pass implementations of the the required backward passes. Sounds a bit confusing at first, I know...

GGML_OP_DIAG_MASK_ZERO is necessary for backward pass of GGML_OP_DIAG_MASK_INF.

Some operations where previously inplace-only. for backward pass there needs to be non-inplace variants.
staying consistent with other operations that have non-inplace and inplace variants, the operations are changed to non-inplace and
functions with "_inplace" are added which are inplace.
in llama we need to call the inplace variants so that it is implemented as before.
for llama backward pass we need to use the non-inplace variants.

still not completely implemented backward passes for llama:

- GGML_OP_ROPE: needs forward pass for GGML_OP_ROPE_BACK
- GGML_OP_GET_ROWS: only necessary for tokenizer

* norm & rms_norm can not be threaded:

after investigation rms norm for quite some time I come to the conclusion that neither norm, nor rms_norm can be threaded, because we need mean over all items, not just of the slices each thread sees.

* remove already resolved TODO

* implement backward pass of ggml_rope and ggml_rope_back

* implement backward pass for ggml_get_rows and for new operation ggml_get_rows_back

* add test-grad0.c

* use GGML_PRINT_DEBUG for debug messages which will otherwise flood the console

* test both gradients of mul_mat

* disable graph dot export as it floods console

* bug fixes for silu_back

* successfully test silu backward

* bug fix for scale backward pass

use sum instead of mean for gradient of scalar scale parameter

* successfully test scale backward

* improve performance of sum backward pass

use add1(x,y) instead of add(x,repeat(y,x))

* improve performance of sqr backward pass

use scale(x,y) instead of mul(x,repeat(y,x))

* successfully test rope backward

* bug fix for cpy backward pass

* successfully test cpy backward

* bug fix for reshape backward pass

* successfully test reshape backward

* add test-opt.c

this uses ggml_opt to train a,b for minimal e=sum(sqr(c - a*b)) for random initial a,b,c

* correctly implement softmax backward pass using new operation ggml_diag

ggml_diag constructs diagonal matrices with entries.
ggml_diag(shape[a,1,c,d]) -> shape[a,a,c,d]

* successfully test soft_max backward

* align shape annotations

* add shape annotations for llama

* de-duplicate ggml_forward_dup code taking care of contiguous tensors of same type.

with this we can duplicate tensor of any typ as long as they are contiguous.

* fix ggml_compute_forward_dup_same_cont for when nelements < nthreads

when more threads are used than elements exist ie1 was less than ie0, resulting in invalid negative byte count argument in memcpy

* bug fix for add_at forward

required for view backward pass

src0 values must be copied to dst, because during addition we don't touch all dst elements in contrast to the normal add function.

* successfully test view backward

* minor code format improvement

* fix ggml_forward_add functions to work correctly with transposed tensors

uses the same logic as in ggml_compute_forward_add_q_f32, but make it consistent across all ggml_compute_forward_add_... functions.
this also slightly changes the mem access pattern of the different threads to works as in ggml_compute_forward_add_q_f32.

* fix ggml_forward_add1 functions to work correctly with transposed tensors

uses the same logic as in ggml_compute_forward_add1_q_f32, but make it consistent across all ggml_compute_forward_add1_... functions.
this also slightly changes the mem access pattern of the different threads to works as in ggml_compute_forward_add1_q_f32.

* test-grad0.c : add print_elements to help with debugging

* successfully test permute backward

* some minor test-grad0 fixes

* fix sub, mul and div functions to work correctly with transposed tensors

uses the same logic as in add

* implement ggml_cont backward pass

* successfully test transpose backward and permute for all permutations

also test sub, mul and div up to max n_dims

* test-grad0.c add TODO for view_2d and view_3d

add_at (required for view backward pass) is a bit tricky for n_dims > 1.

* fix comments

* successfully test diag_mask_inf and diag_mask_zero backward

* test-grad0 : fix test for div

nargs and ndims was swapped, corrupting the stack

* fix diag_mask to work with non-inplace input

* move dup call into the actual add_at functions

* fix get rows backward pass

* successfully test get_rows backward

* fix view backward pass

add nb parameters to add_at like in view.
together with offset they define how to view dst and src0 during the add_at operation.

* successfully test backward pass of view_1d, view_2d and view_3d

* fix backward pass for rms_norm

I would have used formulas from other frameworks, but they differed so I could not decide which is correct.
Instead it was derived here in comment using manual forward-backward automatic differention of rms_norm and simplification.

* successfully test backward pass of rms_norm

some tests may fail when gradients are large.
could not find a satisfying configuration to check for abs error and relative error that passes all tests while still actually testing the results with tight enough error bounds.
when looking at the values the "failed" tests look actually ok. for example:

rms_norm: ndims=2, i=0, k=2, x0=0.000153, xm=0.000053, xp=0.000253, f0=0.278594, f1=0.086213, g0=961.905457, g1=966.064941, eps=0.000100, error_abs=4.159485, error_rel=0.004324

it is due to the test logic in check_gradients that they fail.

* add todos for llama backward pass

- implementation for ADD1 backward pass should probably use sum instead of mean (but this backward pass is not required)
- repeat is not yet tested and looks like it only works for single element src0 inputs.

* add operation ggml_sum_rows

ggml_sum_rows(shape[a,b,c,d]) -> shape[1,b,c,d]

* add missing GGML_OP_SUM_ROWS

* fix backward pass for repeat

requires ggml_sum_rows

* successfully test backward pass of repeat

* update quantization types in switch-case of add_at and add1

* add baby-llama example training a very small llama model from scratch to output a sinusoidal wave.

had to increase maximum number of optimization parameters to train from scratch.

* fix softmax in baby-llama example

* switching from training with adam to lbfgs produces much better results in the baby-llama example

* train with two examples, creating new tensors each time..

* fix bug when using ggml_opt to optimize params in one context and use a renewable context for eval and opt

when not keeping gradients of model parameters they are overwritten by tensors created by opt, which may be invalid after opt context is renewed.
so we need to keep the original gradients and make dups for opt

* train on multiple examples, generate & print tokens with trained model afterwards

ctx0 for evaluation and optimization is renewed for each sample

* add ggml_reshape_1d, ggml_reshape_4d and ggml_view_4d

* fix soft_max backward pass for input->ne[1] != 1

* add ggml_log operation necessary for cross entropy loss

* add test for ggml_log gradients

* implement backward pass for ggml_sum_rows, necessary for cross entropy loss

* implement ggml_repeat support for rank > 2 tensors

* add test for ggml_sum_rows gradients

* fix training get_example_targets

predict the next token, not the current token!

* add square_error_loss and cross_entropy_loss functions

* optimize loss over multiple samples

this increases computation graph, need parallel batched forward for more efficiency.

* fix backward pass for add_at and change arguments to have same order as in view

* add ggml_set(ctx, a, b) to set b in view of a and return modified a

necessary to set values into kv_self cache and properly propagate the gradients

* fix kv_self gradients for training

use ggml_set instead of ggml_cpy to set kv_self cache with properly propagating gradients

* replace inplace operations for training with copying operations to allow gradient propagation

* add GGML_ASSERT to catch ggml_rope and back value errors

* add trainable lora-only model with all big matrices C split into A,B with A*B=C

this is not a lora-finetune, but the whole model changed to have only low-rank "lora" matrices.

training this instead of the normal model resulted in much worse results though...

* vastly improve training results

instead of logit targets 0 and 1 use -1 and +1.

* shorten code using a variable

* change name of GGML_OP_ADD_AT to GGML_OP_ACC

* smaller default values for baby llama model parameters

* update static assert of GGML_OP_COUNT

* remove shape annotations in llama_eval_internal

* revert disabling of threading for rms_norm and norm

* rename print functions in baby-llama example

* fix call to ggml_set_name

* add missing include for strcmp, etc

* remove trailing whitespace

* reduce number of test-grad0 iterations

avoid exceeding timeout of automated tests

* remove busy loop that was used as sleep for slower sinus wave generation

* disable slow tests grad0 and opt to avoid exceeding timeouts

* c++ in baby-llama example

use c++ includes instead of c includes
use std::min, std::max instead of MIN, MAX macros

* c++ in baby-llama example

use c++ includes instead of c includes
use std::min, std::max instead of MIN, MAX macros

* ggml : fix compiler warnings + cosmetic changes

* ggml : fix nullptr derefs in GGML_OP_CONT and GGML_OP_RESHAPE back

* swap arguments to vDSP_vdiv call

documentation for vDSP_vdiv states: "Note that B comes before A!"

* swap arguments to vDSP_vdiv call

documentation for vDSP_vdiv states: "Note that B comes before A!"

* ggml : swap vDSP_vsub args as per documentation

* add parallel batched forward function for baby-llama training

* cleanup code for batched training

* remove trailing whitespace

* minor : fix compiler warnings + indentation style

* ggml : fix null ptr deref in backward pass

* ggml : remove Q4_2 remnants

* ggml : fix clang-tidy warnings

* baby-llama : couple of clang-tidy warnings

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-05-13 15:56:40 +03:00
.devops quantize : use map to assign quantization type from string (#1191) 2023-04-26 18:43:27 +02:00
.github Add clang-tidy reviews to CI (#1407) 2023-05-12 15:40:53 +02:00
examples ggml : implement backward pass for llama + small training-llama-from-scratch example (#1360) 2023-05-13 15:56:40 +03:00
media media : add logos and banners 2023-04-05 18:58:31 +03:00
models Make loading weights 10-100x faster 2023-03-30 12:28:25 -07:00
pocs ggml : a faster version for Q4_1 x Q8_0 dot products (#1083) 2023-04-21 18:18:26 +03:00
prompts prompts : model agnostic DAN (#1304) 2023-05-11 18:10:19 +03:00
scripts ggml : remove bit shuffling (#1405) 2023-05-12 00:23:08 +03:00
spm-headers deploy : add a Package.swift for SwiftPM support (#393) 2023-03-28 19:39:01 +03:00
tests ggml : implement backward pass for llama + small training-llama-from-scratch example (#1360) 2023-05-13 15:56:40 +03:00
.clang-tidy Add clang-tidy reviews to CI (#1407) 2023-05-12 15:40:53 +02:00
.dockerignore Fix whitespace, add .editorconfig, add GitHub workflow (#883) 2023-04-11 19:45:44 +00:00
.ecrc Fix whitespace, add .editorconfig, add GitHub workflow (#883) 2023-04-11 19:45:44 +00:00
.editorconfig do not force the prompt file to end with a new line (#908) 2023-04-13 11:33:16 +02:00
.gitignore llama : fix various warnings 2023-05-13 11:23:15 +03:00
build.zig zig : update build.zig (#872) 2023-04-13 16:43:22 +03:00
CMakeLists.txt fix build-info.h for git submodules (#1289) 2023-05-03 02:43:43 +02:00
convert-lora-to-ggml.py py : cast lora_alpha to int in convert-lora-to-ggml (#1170) 2023-04-25 23:33:08 +02:00
convert-pth-to-ggml.py py : new conversion script (#545) 2023-04-14 10:03:03 +03:00
convert.py convert: add ability to convert safetensors files (#1276) 2023-05-08 13:54:26 +02:00
flake.lock Nix flake (#40) 2023-03-17 23:03:48 +01:00
flake.nix nix: use convert.py instead of legacy wrapper convert-pth-to-ggml.py (#981) 2023-04-25 23:19:57 +02:00
ggml-cuda.cu ggml : remove bit shuffling (#1405) 2023-05-12 00:23:08 +03:00
ggml-cuda.h cuBLAS: refactor and optimize f16 mat mul performance (#1259) 2023-05-01 18:11:07 +02:00
ggml-opencl.c opencl : fix kernels for the new formats (#1422) 2023-05-13 09:01:15 +03:00
ggml-opencl.h ggml : add CLBlast support (#1164) 2023-04-28 17:57:16 +03:00
ggml.c ggml : implement backward pass for llama + small training-llama-from-scratch example (#1360) 2023-05-13 15:56:40 +03:00
ggml.h ggml : implement backward pass for llama + small training-llama-from-scratch example (#1360) 2023-05-13 15:56:40 +03:00
LICENSE Add LICENSE (#21) 2023-03-12 08:36:03 +02:00
llama-util.h Wrap exceptions in std::exception to verbose output on exception. (#1316) 2023-05-04 18:56:27 +02:00
llama.cpp ggml : implement backward pass for llama + small training-llama-from-scratch example (#1360) 2023-05-13 15:56:40 +03:00
llama.h llama : free ggml context in set / copy state data (close #1425) 2023-05-13 09:08:52 +03:00
Makefile makefile: automatic Arch Linux detection (#1332) 2023-05-05 23:57:14 +02:00
Package.swift Add Accelerate/BLAS when using Swift (#765) 2023-04-05 06:44:24 -04:00
README.md readme : update Q4_0 perplexities 2023-05-13 09:12:44 +03:00
requirements.txt py : bump sentencepiece to 0.1.98 to support Python 3.11 (#976) 2023-04-14 19:46:49 +00:00
SHA256SUMS ggml : remove bit shuffling (#1405) 2023-05-12 00:23:08 +03:00

llama.cpp

llama

Actions Status License: MIT

Inference of LLaMA model in pure C/C++

Hot topics:

Table of Contents
  1. Description
  2. Usage
  3. Contributing
  4. Coding guidelines
  5. Docs

Description

The main goal of llama.cpp is to run the LLaMA model using 4-bit integer quantization on a MacBook

  • Plain C/C++ implementation without dependencies
  • Apple silicon first-class citizen - optimized via ARM NEON and Accelerate framework
  • AVX, AVX2 and AVX512 support for x86 architectures
  • Mixed F16 / F32 precision
  • 4-bit, 5-bit and 8-bit integer quantization support
  • Runs on the CPU
  • OpenBLAS support
  • cuBLAS and CLBlast support

The original implementation of llama.cpp was hacked in an evening. Since then, the project has improved significantly thanks to many contributions. This project is for educational purposes and serves as the main playground for developing new features for the ggml library.

Supported platforms:

  • Mac OS
  • Linux
  • Windows (via CMake)
  • Docker

Supported models:

Bindings:

UI:


Here is a typical run using LLaMA-7B:

make -j && ./main -m ./models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512
I llama.cpp build info:
I UNAME_S:  Darwin
I UNAME_P:  arm
I UNAME_M:  arm64
I CFLAGS:   -I.              -O3 -DNDEBUG -std=c11   -fPIC -pthread -DGGML_USE_ACCELERATE
I CXXFLAGS: -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC -pthread
I LDFLAGS:   -framework Accelerate
I CC:       Apple clang version 14.0.0 (clang-1400.0.29.202)
I CXX:      Apple clang version 14.0.0 (clang-1400.0.29.202)

make: Nothing to be done for `default'.
main: seed = 1678486056
llama_model_load: loading model from './models/7B/ggml-model-q4_0.bin' - please wait ...
llama_model_load: n_vocab = 32000
llama_model_load: n_ctx   = 512
llama_model_load: n_embd  = 4096
llama_model_load: n_mult  = 256
llama_model_load: n_head  = 32
llama_model_load: n_layer = 32
llama_model_load: n_rot   = 128
llama_model_load: f16     = 2
llama_model_load: n_ff    = 11008
llama_model_load: ggml ctx size = 4529.34 MB
llama_model_load: memory_size =   512.00 MB, n_mem = 16384
llama_model_load: .................................... done
llama_model_load: model size =  4017.27 MB / num tensors = 291

main: prompt: 'Building a website can be done in 10 simple steps:'
main: number of tokens in prompt = 15
     1 -> ''
  8893 -> 'Build'
   292 -> 'ing'
   263 -> ' a'
  4700 -> ' website'
   508 -> ' can'
   367 -> ' be'
  2309 -> ' done'
   297 -> ' in'
 29871 -> ' '
 29896 -> '1'
 29900 -> '0'
  2560 -> ' simple'
  6576 -> ' steps'
 29901 -> ':'

sampling parameters: temp = 0.800000, top_k = 40, top_p = 0.950000


Building a website can be done in 10 simple steps:
1) Select a domain name and web hosting plan
2) Complete a sitemap
3) List your products
4) Write product descriptions
5) Create a user account
6) Build the template
7) Start building the website
8) Advertise the website
9) Provide email support
10) Submit the website to search engines
A website is a collection of web pages that are formatted with HTML. HTML is the code that defines what the website looks like and how it behaves.
The HTML code is formatted into a template or a format. Once this is done, it is displayed on the user's browser.
The web pages are stored in a web server. The web server is also called a host. When the website is accessed, it is retrieved from the server and displayed on the user's computer.
A website is known as a website when it is hosted. This means that it is displayed on a host. The host is usually a web server.
A website can be displayed on different browsers. The browsers are basically the software that renders the website on the user's screen.
A website can also be viewed on different devices such as desktops, tablets and smartphones.
Hence, to have a website displayed on a browser, the website must be hosted.
A domain name is an address of a website. It is the name of the website.
The website is known as a website when it is hosted. This means that it is displayed on a host. The host is usually a web server.
A website can be displayed on different browsers. The browsers are basically the software that renders the website on the users screen.
A website can also be viewed on different devices such as desktops, tablets and smartphones. Hence, to have a website displayed on a browser, the website must be hosted.
A domain name is an address of a website. It is the name of the website.
A website is an address of a website. It is a collection of web pages that are formatted with HTML. HTML is the code that defines what the website looks like and how it behaves.
The HTML code is formatted into a template or a format. Once this is done, it is displayed on the users browser.
A website is known as a website when it is hosted

main: mem per token = 14434244 bytes
main:     load time =  1332.48 ms
main:   sample time =  1081.40 ms
main:  predict time = 31378.77 ms / 61.41 ms per token
main:    total time = 34036.74 ms

And here is another demo of running both LLaMA-7B and whisper.cpp on a single M1 Pro MacBook:

https://user-images.githubusercontent.com/1991296/224442907-7693d4be-acaa-4e01-8b4f-add84093ffff.mp4

Usage

Here are the steps for the LLaMA-7B model.

Get the Code

git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp

Build

In order to build llama.cpp you have three different options.

  • Using make:

    • On Linux or MacOS:

      make
      
    • On Windows:

      1. Download the latest fortran version of w64devkit.
      2. Extract w64devkit on your pc.
      3. Run w64devkit.exe.
      4. Use the cd command to reach the llama.cpp folder.
      5. From here you can run:
        make
        
  • Using CMake:

    mkdir build
    cd build
    cmake ..
    cmake --build . --config Release
    
  • Using Zig:

    zig build -Drelease-fast
    

BLAS Build

Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). BLAS doesn't affect the normal generation performance. There are currently three different implementations of it:

  • Accelerate Framework:

    This is only available on Mac PCs and it's enabled by default. You can just build using the normal instructions.

  • OpenBLAS:

    This provides BLAS acceleration using only the CPU. Make sure to have OpenBLAS installed on your machine.

    • Using make:

      • On Linux:

        make LLAMA_OPENBLAS=1
        
      • On Windows:

        1. Download the latest fortran version of w64devkit.

        2. Download the latest version of OpenBLAS for Windows.

        3. Extract w64devkit on your pc.

        4. From the OpenBLAS zip that you just downloaded copy libopenblas.a, located inside the lib folder, inside w64devkit\x86_64-w64-mingw32\lib.

        5. From the same OpenBLAS zip copy the content of the include folder inside w64devkit\x86_64-w64-mingw32\include.

        6. Run w64devkit.exe.

        7. Use the cd command to reach the llama.cpp folder.

        8. From here you can run:

          make LLAMA_OPENBLAS=1
          
    • Using CMake on Linux:

      mkdir build
      cd build
      cmake .. -DLLAMA_OPENBLAS=ON
      cmake --build . --config Release
      
  • cuBLAS

    This provides BLAS acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager or from here: CUDA Toolkit.

    • Using make:

      make LLAMA_CUBLAS=1
      
    • Using CMake:

      mkdir build
      cd build
      cmake .. -DLLAMA_CUBLAS=ON
      cmake --build . --config Release
      

Note: Because llama.cpp uses multiple CUDA streams for matrix multiplication results are not guaranteed to be reproducible. If you need reproducibility, set GGML_CUDA_MAX_STREAMS in the file ggml-cuda.cu to 1.

Prepare Data & Run

# obtain the original LLaMA model weights and place them in ./models
ls ./models
65B 30B 13B 7B tokenizer_checklist.chk tokenizer.model

# install Python dependencies
python3 -m pip install -r requirements.txt

# convert the 7B model to ggml FP16 format
python3 convert.py models/7B/

# quantize the model to 4-bits (using q4_0 method)
./quantize ./models/7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.bin q4_0

# run the inference
./main -m ./models/7B/ggml-model-q4_0.bin -n 128

When running the larger models, make sure you have enough disk space to store all the intermediate files.

Memory/Disk Requirements

As the models are currently fully loaded into memory, you will need adequate disk space to save them and sufficient RAM to load them. At the moment, memory and disk requirements are the same.

Model Original size Quantized size (4-bit)
7B 13 GB 3.9 GB
13B 24 GB 7.8 GB
30B 60 GB 19.5 GB
65B 120 GB 38.5 GB

Quantization

Several quantization methods are supported. They differ in the resulting model disk size and inference speed.

Model Measure F16 Q4_0 Q4_1 Q5_0 Q5_1 Q8_0
7B perplexity 5.9066 6.1565 6.0910 5.9862 5.9481 5.9069
7B file size 13.0G 4.0G 4.8G 4.4G 4.8G 7.1G
7B ms/tok @ 4th 128 50 54 75 83 75
7B ms/tok @ 8th 123 44 52 53 58 72
7B bits/weight 16.0 5.0 6.0 5.5 6.0 9.0
13B perplexity 5.2543 5.3860 5.3607 5.2856 5.2706 5.2548
13B file size 25.0G 7.6G 9.1G 8.4G 9.1G 14G
13B ms/tok @ 4th 239 93 101 150 164 141
13B ms/tok @ 8th 240 81 96 96 104 136
13B bits/weight 16.0 5.0 6.0 5.5 6.0 9.0

Perplexity (measuring model quality)

You can use the perplexity example to measure perplexity over a given prompt (lower perplexity is better). For more information, see https://huggingface.co/docs/transformers/perplexity.

The perplexity measurements in table above are done against the wikitext2 test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512. The time per token is measured on a MacBook M1 Pro 32GB RAM using 4 and 8 threads.

Interactive mode

If you want a more ChatGPT-like experience, you can run in interactive mode by passing -i as a parameter. In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a reverse prompt with the parameter -r "reverse prompt string". This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMa emulate a chat between multiple users, say Alice and Bob, and pass -r "Alice:".

Here is an example of a few-shot interaction, invoked with the command

# default arguments using a 7B model
./examples/chat.sh

# advanced chat with a 13B model
./examples/chat-13B.sh

# custom arguments using a 13B model
./main -m ./models/13B/ggml-model-q4_0.bin -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt

Note the use of --color to distinguish between user input and generated text. Other parameters are explained in more detail in the README for the main example program.

image

Instruction mode with Alpaca

  1. First, download the ggml Alpaca model into the ./models folder
  2. Run the main tool like this:
./examples/alpaca.sh

Sample run:

== Running in interactive mode. ==
 - Press Ctrl+C to interject at any time.
 - Press Return to return control to LLaMa.
 - If you want to submit another line, end your input in '\'.

 Below is an instruction that describes a task. Write a response that appropriately completes the request.

> How many letters are there in the English alphabet?
There 26 letters in the English Alphabet
> What is the most common way of transportation in Amsterdam?
The majority (54%) are using public transit. This includes buses, trams and metros with over 100 lines throughout the city which make it very accessible for tourists to navigate around town as well as locals who commute by tram or metro on a daily basis
> List 5 words that start with "ca".
cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach.
>

Using GPT4All

  • Obtain the tokenizer.model file from LLaMA model and put it to models
  • Obtain the added_tokens.json file from Alpaca model and put it to models
  • Obtain the gpt4all-lora-quantized.bin file from GPT4All model and put it to models/gpt4all-7B
  • It is distributed in the old ggml format which is now obsoleted
  • You have to convert it to the new format using convert.py:
python3 convert.py models/gpt4all-7B/gpt4all-lora-quantized.bin
  • You can now use the newly generated models/gpt4all-7B/ggml-model-q4_0.bin model in exactly the same way as all other models

  • The newer GPT4All-J model is not yet supported!

Using Pygmalion 7B & Metharme 7B

python3 convert.py pygmalion-7b/ --outtype q4_1

The Pygmalion 7B & Metharme 7B weights are saved in bfloat16 precision. If you wish to convert to ggml without quantizating, please specify the --outtype as f32 instead of f16.

Obtaining the Facebook LLaMA original model and Stanford Alpaca model data

  • Under no circumstances should IPFS, magnet links, or any other links to model downloads be shared anywhere in this repository, including in issues, discussions, or pull requests. They will be immediately deleted.
  • The LLaMA models are officially distributed by Facebook and will never be provided through this repository.
  • Refer to Facebook's LLaMA repository if you need to request access to the model data.

Verifying the model files

Please verify the sha256 checksums of all downloaded model files to confirm that you have the correct model data files before creating an issue relating to your model files.

  • The following python script will verify if you have all possible latest files in your self-installed ./models subdirectory:
# run the verification script
python3 .\scripts\verify-checksum-models.py
  • On linux or macOS it is also possible to run the following commands to verify if you have all possible latest files in your self-installed ./models subdirectory:
    • On Linux: sha256sum --ignore-missing -c SHA256SUMS
    • on macOS: shasum -a 256 --ignore-missing -c SHA256SUMS

Seminal papers and background on the models

If your issue is with model generation quality, then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:

How to run

  1. Download/extract: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
  2. Run ./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw
  3. Output:
perplexity : calculating perplexity over 655 chunks
24.43 seconds per pass - ETA 4.45 hours
[1]4.5970,[2]5.1807,[3]6.0382,...

And after 4.45 hours, you will have the final perplexity.

Android

You can easily run llama.cpp on Android device with termux. First, obtain the Android NDK and then build with CMake:

$ mkdir build-android
$ cd build-android
$ export NDK=<your_ndk_directory>
$ cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
$ make

Install termux on your device and run termux-setup-storage to get access to your SD card. Finally, copy the llama binary and the model files to your device storage. Here is a demo of an interactive session running on Pixel 5 phone:

https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b050-55b0b3b9274c.mp4

Docker

Prerequisites

  • Docker must be installed and running on your system.
  • Create a folder to store big models & intermediate files (ex. /llama/models)

Images

We have two Docker images available for this project:

  1. ghcr.io/ggerganov/llama.cpp:full: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
  2. ghcr.io/ggerganov/llama.cpp:light: This image only includes the main executable file.

Usage

The easiest way to download the models, convert them to ggml and optimize them is with the --all-in-one command which includes the full docker image.

Replace /path/to/models below with the actual path where you downloaded the models.

docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --all-in-one "/models/" 7B

On completion, you are ready to play!

docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512

or with a light image:

docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512

Contributing

  • Contributors can open PRs
  • Collaborators can push to branches in the llama.cpp repo and merge PRs into the master branch
  • Collaborators will be invited based on contributions
  • Any help with managing issues and PRs is very appreciated!
  • Make sure to read this: Inference at the edge
  • A bit of backstory for those who are interested: Changelog podcast

Coding guidelines

  • Avoid adding third-party dependencies, extra files, extra headers, etc.
  • Always consider cross-compatibility with other operating systems and architectures
  • Avoid fancy looking modern STL constructs, use basic for loops, avoid templates, keep it simple
  • There are no strict rules for the code style, but try to follow the patterns in the code (indentation, spaces, etc.). Vertical alignment makes things more readable and easier to batch edit
  • Clean-up any trailing whitespaces, use 4 spaces for indentation, brackets on the same line, void * ptr, int & a
  • See good first issues for tasks suitable for first contributions

Docs