llama.cpp/examples/main/main.cpp
comex f963b63afa Rewrite loading code to try to satisfy everyone:
- Support all three formats (ggml, ggmf, ggjt).  (However, I didn't
  include the hack needed to support GPT4All files without conversion.
  Those can still be used after converting them with convert.py from my
  other PR.)

- Support both mmap and read (mmap is used by default, but can be
  disabled with `--no-mmap`, and is automatically disabled for pre-ggjt
  files or on platforms where mmap is not supported).

- Support multi-file models like before, but automatically determine the
  number of parts rather than requiring `--n_parts`.

- Improve validation and error checking.

- Stop using the per-file type field (f16) entirely in favor of just
  relying on the per-tensor type/size fields.  This has no immediate
  benefit, but makes it easier to experiment with different formats, and
  should make it easier to support the new GPTQ-for-LLaMa models in the
  future (I have some work in progress on that front).

- Support VirtualLock on Windows (using the same `--mlock` option as on
  Unix).

    - Indicate loading progress when using mmap + mlock.  (Which led me
      to the interesting observation that on my Linux machine, with a
      warm file cache, mlock actually takes some time, whereas mmap
      without mlock starts almost instantly...)

      - To help implement this, move mlock support from ggml to the
        loading code.

- madvise/PrefetchVirtualMemory support (based on #740)

- Switch from ifstream to the `fopen` family of functions to avoid
  unnecessary copying and, when mmap is enabled, allow reusing the same
  file descriptor for both metadata reads and mmap (whereas the existing
  implementation opens the file a second time to mmap).

- Quantization now produces a single-file output even with multi-file
  inputs (not really a feature as much as 'it was easier this way').

Implementation notes:

I tried to factor the code into more discrete pieces than before.

Regarding code style: I tried to follow the code style, but I'm naughty
and used a few advanced C++ features repeatedly:

- Destructors to make it easier to ensure everything gets cleaned up.

- Exceptions.  I don't even usually use exceptions when writing C++, and
  I can remove them if desired... but here they make the loading code
  much more succinct while still properly handling a variety of errors,
  ranging from API calls failing to integer overflow and allocation
  failure.  The exceptions are converted to error codes at the
  API boundary.)

Co-authored-by: Pavol Rusnak <pavol@rusnak.io> (for the bit I copied from #740)
2023-04-10 01:10:46 +02:00

470 lines
16 KiB
C++

#include "common.h"
#include "llama.h"
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#include <signal.h>
#include <unistd.h>
#elif defined (_WIN32)
#include <signal.h>
#endif
static console_state con_st;
static bool is_interacting = false;
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
void sigint_handler(int signo) {
set_console_color(con_st, CONSOLE_COLOR_DEFAULT);
printf("\n"); // this also force flush stdout.
if (signo == SIGINT) {
if (!is_interacting) {
is_interacting=true;
} else {
_exit(130);
}
}
}
#endif
int main(int argc, char ** argv) {
gpt_params params;
params.model = "models/llama-7B/ggml-model.bin";
if (gpt_params_parse(argc, argv, params) == false) {
return 1;
}
// save choice to use color for later
// (note for later: this is a slightly awkward choice)
con_st.use_color = params.use_color;
#if defined (_WIN32)
win32_console_init(params.use_color);
#endif
if (params.perplexity) {
printf("\n************\n");
printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
printf("************\n\n");
return 0;
}
if (params.embedding) {
printf("\n************\n");
printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
printf("************\n\n");
return 0;
}
if (params.n_ctx > 2048) {
fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
"expect poor results\n", __func__, params.n_ctx);
}
if (params.seed <= 0) {
params.seed = time(NULL);
}
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = gpt_random_prompt(rng);
}
// params.prompt = R"(// this function checks if the number n is prime
//bool is_prime(int n) {)";
llama_context * ctx;
// load the model
{
auto lparams = llama_context_default_params();
lparams.n_ctx = params.n_ctx;
lparams.n_parts = params.n_parts;
lparams.seed = params.seed;
lparams.f16_kv = params.memory_f16;
lparams.use_mmap = params.use_mmap;
lparams.use_mlock = params.use_mlock;
ctx = llama_init_from_file(params.model.c_str(), lparams);
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
return 1;
}
}
// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
}
// determine the maximum memory usage needed to do inference for the given n_batch and n_predict parameters
// uncomment the "used_mem" line in llama.cpp to see the results
if (params.mem_test) {
{
const std::vector<llama_token> tmp(params.n_batch, 0);
llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
}
{
const std::vector<llama_token> tmp = { 0, };
llama_eval(ctx, tmp.data(), tmp.size(), params.n_predict - 1, params.n_threads);
}
llama_print_timings(ctx);
llama_free(ctx);
return 0;
}
// Add a space in front of the first character to match OG llama tokenizer behavior
params.prompt.insert(0, 1, ' ');
// tokenize the prompt
auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
const int n_ctx = llama_n_ctx(ctx);
if ((int) embd_inp.size() > n_ctx - 4) {
fprintf(stderr, "%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
return 1;
}
// number of tokens to keep when resetting context
if (params.n_keep < 0 || params.n_keep > (int)embd_inp.size() || params.instruct) {
params.n_keep = (int)embd_inp.size();
}
// prefix & suffix for instruct mode
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true);
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
// in instruct mode, we inject a prefix and a suffix to each input by the user
if (params.instruct) {
params.interactive_start = true;
params.antiprompt.push_back("### Instruction:\n\n");
}
// enable interactive mode if reverse prompt or interactive start is specified
if (params.antiprompt.size() != 0 || params.interactive_start) {
params.interactive = true;
}
// determine newline token
auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
if (params.verbose_prompt) {
fprintf(stderr, "\n");
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
for (int i = 0; i < (int) embd_inp.size(); i++) {
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
}
if (params.n_keep > 0) {
fprintf(stderr, "%s: static prompt based on n_keep: '", __func__);
for (int i = 0; i < params.n_keep; i++) {
fprintf(stderr, "%s", llama_token_to_str(ctx, embd_inp[i]));
}
fprintf(stderr, "'\n");
}
fprintf(stderr, "\n");
}
if (params.interactive) {
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
struct sigaction sigint_action;
sigint_action.sa_handler = sigint_handler;
sigemptyset (&sigint_action.sa_mask);
sigint_action.sa_flags = 0;
sigaction(SIGINT, &sigint_action, NULL);
#elif defined (_WIN32)
signal(SIGINT, sigint_handler);
#endif
fprintf(stderr, "%s: interactive mode on.\n", __func__);
if (params.antiprompt.size()) {
for (auto antiprompt : params.antiprompt) {
fprintf(stderr, "Reverse prompt: '%s'\n", antiprompt.c_str());
}
}
if (!params.input_prefix.empty()) {
fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str());
}
}
fprintf(stderr, "sampling: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n",
params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty);
fprintf(stderr, "generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
fprintf(stderr, "\n\n");
// TODO: replace with ring-buffer
std::vector<llama_token> last_n_tokens(n_ctx);
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
if (params.interactive) {
fprintf(stderr, "== Running in interactive mode. ==\n"
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
" - Press Ctrl+C to interject at any time.\n"
#endif
" - Press Return to return control to LLaMa.\n"
" - If you want to submit another line, end your input in '\\'.\n\n");
is_interacting = params.interactive_start;
}
bool is_antiprompt = false;
bool input_noecho = false;
int n_past = 0;
int n_remain = params.n_predict;
int n_consumed = 0;
// the first thing we will do is to output the prompt, so set color accordingly
set_console_color(con_st, CONSOLE_COLOR_PROMPT);
std::vector<llama_token> embd;
while (n_remain != 0 || params.interactive) {
// predict
if (embd.size() > 0) {
// infinite text generation via context swapping
// if we run out of context:
// - take the n_keep first tokens from the original prompt (via n_past)
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in a batch
if (n_past + (int) embd.size() > n_ctx) {
const int n_left = n_past - params.n_keep;
n_past = params.n_keep;
// insert n_left/2 tokens at the start of embd from last_n_tokens
embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_n_tokens.end() - embd.size());
//printf("\n---\n");
//printf("resetting: '");
//for (int i = 0; i < (int) embd.size(); i++) {
// printf("%s", llama_token_to_str(ctx, embd[i]));
//}
//printf("'\n");
//printf("\n---\n");
}
if (llama_eval(ctx, embd.data(), embd.size(), n_past, params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
}
n_past += embd.size();
embd.clear();
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
// out of user input, sample next token
const int32_t top_k = params.top_k;
const float top_p = params.top_p;
const float temp = params.temp;
const float repeat_penalty = params.repeat_penalty;
llama_token id = 0;
{
auto logits = llama_get_logits(ctx);
if (params.ignore_eos) {
logits[llama_token_eos()] = 0;
}
id = llama_sample_top_p_top_k(ctx,
last_n_tokens.data() + n_ctx - params.repeat_last_n,
params.repeat_last_n, top_k, top_p, temp, repeat_penalty);
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(id);
}
// replace end of text token with newline token when in interactive mode
if (id == llama_token_eos() && params.interactive && !params.instruct) {
id = llama_token_newline.front();
if (params.antiprompt.size() != 0) {
// tokenize and inject first reverse prompt
const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
}
}
// add it to the context
embd.push_back(id);
// echo this to console
input_noecho = false;
// decrement remaining sampling budget
--n_remain;
} else {
// some user input remains from prompt or interaction, forward it to processing
while ((int) embd_inp.size() > n_consumed) {
embd.push_back(embd_inp[n_consumed]);
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(embd_inp[n_consumed]);
++n_consumed;
if ((int) embd.size() >= params.n_batch) {
break;
}
}
}
// display text
if (!input_noecho) {
for (auto id : embd) {
printf("%s", llama_token_to_str(ctx, id));
}
fflush(stdout);
}
// reset color to default if we there is no pending user input
if (!input_noecho && (int)embd_inp.size() == n_consumed) {
set_console_color(con_st, CONSOLE_COLOR_DEFAULT);
}
// in interactive mode, and not currently processing queued inputs;
// check if we should prompt the user for more
if (params.interactive && (int) embd_inp.size() <= n_consumed) {
// check for reverse prompt
if (params.antiprompt.size()) {
std::string last_output;
for (auto id : last_n_tokens) {
last_output += llama_token_to_str(ctx, id);
}
is_antiprompt = false;
// Check if each of the reverse prompts appears at the end of the output.
for (std::string & antiprompt : params.antiprompt) {
if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) {
is_interacting = true;
is_antiprompt = true;
set_console_color(con_st, CONSOLE_COLOR_USER_INPUT);
fflush(stdout);
break;
}
}
}
if (n_past > 0 && is_interacting) {
// potentially set color to indicate we are taking user input
set_console_color(con_st, CONSOLE_COLOR_USER_INPUT);
#if defined (_WIN32)
// Windows: must reactivate sigint handler after each signal
signal(SIGINT, sigint_handler);
#endif
if (params.instruct) {
printf("\n> ");
}
std::string buffer;
if (!params.input_prefix.empty()) {
buffer += params.input_prefix;
printf("%s", buffer.c_str());
}
std::string line;
bool another_line = true;
do {
#if defined(_WIN32)
std::wstring wline;
if (!std::getline(std::wcin, wline)) {
// input stream is bad or EOF received
return 0;
}
win32_utf8_encode(wline, line);
#else
if (!std::getline(std::cin, line)) {
// input stream is bad or EOF received
return 0;
}
#endif
if (line.empty() || line.back() != '\\') {
another_line = false;
} else {
line.pop_back(); // Remove the continue character
}
buffer += line + '\n'; // Append the line to the result
} while (another_line);
// done taking input, reset color
set_console_color(con_st, CONSOLE_COLOR_DEFAULT);
// Add tokens to embd only if the input buffer is non-empty
// Entering a empty line lets the user pass control back
if (buffer.length() > 1) {
// instruct mode: insert instruction prefix
if (params.instruct && !is_antiprompt) {
n_consumed = embd_inp.size();
embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
}
auto line_inp = ::llama_tokenize(ctx, buffer, false);
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
// instruct mode: insert response suffix
if (params.instruct) {
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
}
n_remain -= line_inp.size();
}
input_noecho = true; // do not echo this again
}
if (n_past > 0) {
is_interacting = false;
}
}
// end of text token
if (!embd.empty() && embd.back() == llama_token_eos()) {
if (params.instruct) {
is_interacting = true;
} else {
fprintf(stderr, " [end of text]\n");
break;
}
}
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
if (params.interactive && n_remain <= 0 && params.n_predict != -1) {
n_remain = params.n_predict;
is_interacting = true;
}
}
#if defined (_WIN32)
signal(SIGINT, SIG_DFL);
#endif
llama_print_timings(ctx);
llama_free(ctx);
set_console_color(con_st, CONSOLE_COLOR_DEFAULT);
return 0;
}