llama.cpp/ggml-opencl.cpp
Maarten ter Huurne 7d873811f3
Fix handling of "invalid property" when creating OpenCL command queue (#1565)
The `clCreateCommandQueue()` function will return the code
`CL_INVALID_QUEUE_PROPERTIES` when passed unsupported properties,
not `CL_INVALID_PROPERTY` as the original code was checking for.
2023-05-23 19:01:15 +03:00

1034 lines
37 KiB
C++

#include "ggml-opencl.h"
#include <array>
#include <atomic>
#include <sstream>
#define CL_TARGET_OPENCL_VERSION 110
#include <clblast.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "ggml.h"
#define CL_DMMV_BLOCK_SIZE 32;
#define MULTILINE_QUOTE(...) #__VA_ARGS__
static std::string program_source = MULTILINE_QUOTE(
typedef char int8_t;
typedef uchar uint8_t;
typedef int int32_t;
typedef uint uint32_t;
struct __attribute__ ((packed)) block_q4_0
{
half d;
uint8_t qs[QK4_0 / 2];
};
struct __attribute__ ((packed)) block_q4_1
{
half d;
half m;
uint8_t qs[QK4_1 / 2];
};
struct __attribute__ ((packed)) block_q5_0
{
half d;
uint32_t qh;
uint8_t qs[QK5_0 / 2];
};
struct __attribute__ ((packed)) block_q5_1
{
half d;
half m;
uint32_t qh;
uint8_t qs[QK5_1 / 2];
};
struct __attribute__ ((packed)) block_q8_0
{
half d;
int8_t qs[QK8_0];
};
__kernel void convert_fp16_to_fp32(__global half* x, __global float* y) {
const uint i = get_global_id(0);
y[i] = vload_half(0, &x[i]);
}
void dequantize_q4_0(__global const struct block_q4_0* x, const int ib, const int iqs, float* v0, float* v1) {
const float d = vload_half(0, &x[ib].d);
const uint8_t vui = x[ib].qs[iqs];
const int8_t vi0 = vui & 0xF;
const int8_t vi1 = vui >> 4;
*v0 = (vi0 - 8)*d;
*v1 = (vi1 - 8)*d;
}
void dequantize_q4_1(__global const struct block_q4_1* x, const int ib, const int iqs, float* v0, float* v1) {
const float d = vload_half(0, &x[ib].d);
const float m = vload_half(0, &x[ib].m);
const uint8_t vui = x[ib].qs[iqs];
const int8_t vi0 = vui & 0xF;
const int8_t vi1 = vui >> 4;
*v0 = vi0*d + m;
*v1 = vi1*d + m;
}
void dequantize_q5_0(__global const struct block_q5_0* x, const int ib, const int iqs, float* v0, float* v1) {
const float d = vload_half(0, &x[ib].d);
uint32_t qh = x[ib].qh;
const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16;
const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16;
*v0 = x0*d;
*v1 = x1*d;
}
void dequantize_q5_1(__global const struct block_q5_1* x, const int ib, const int iqs, float* v0, float* v1) {
const float d = vload_half(0, &x[ib].d);
const float m = vload_half(0, &x[ib].m);
uint32_t qh = x[ib].qh;
const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0);
const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1);
*v0 = x0*d + m;
*v1 = x1*d + m;
}
void dequantize_q8_0(__global const struct block_q8_0* x, const int ib, const int iqs, float* v0, float* v1) {
const float d = vload_half(0, &x[ib].d);
const int8_t vi0 = x[ib].qs[iqs + 0];
const int8_t vi1 = x[ib].qs[iqs + 1];
*v0 = vi0*d;
*v1 = vi1*d;
}
void convert_f16(__global half* x, const int ib, const int iqs, float* v0, float* v1){
*v0 = vload_half(0, &x[ib + 0]);
*v1 = vload_half(0, &x[ib + 1]);
}
);
std::string dequant_template = MULTILINE_QUOTE(
__kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) {
const int i = get_group_id(0)*get_local_size(0) + get_local_id(0)*2;
if (i >= get_global_size(0)) {
return;
}
const uint qk = QUANT_K;
const uint qr = QUANT_R;
const int ib = i/qk; // block index
const int iqs = (i%qk)/qr; // quant index
const int iybs = i - i%qk; // y block start index
const int y_offset = qr == 1 ? 1 : qk/2;
// dequantize
float v0, v1;
DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
y[iybs + iqs + 0] = v0;
y[iybs + iqs + y_offset] = v1;
}
);
std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE(
__kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) {
const int block_size = get_local_size(0);
const int row = get_global_id(0) / block_size;
const int tid = get_local_id(0);
const uint qk = QUANT_K;
const uint qr = QUANT_R;
const int y_offset = qr == 1 ? 1 : qk/2;
tmp[tid] = 0;
for (int i = 0; i < ncols/block_size; i += 2) {
const int col = i*block_size + 2*tid;
const int ib = (row*ncols + col)/qk; // block index
const int iqs = (col%qk)/qr; // quant index
const int iybs = col - col%qk; // y block start index
// dequantize
float v0, v1;
DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
// matrix multiplication
tmp[tid] += v0 * y[iybs + iqs + 0];
tmp[tid] += v1 * y[iybs + iqs + y_offset];
}
// sum up partial sums and write back result
barrier(CLK_LOCAL_MEM_FENCE);
for (int s=block_size/2; s>0; s>>=1) {
if (tid < s) {
tmp[tid] += tmp[tid + s];
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if (tid == 0) {
dst[row] = tmp[0];
}
}
);
#define CL_CHECK(err) \
do { \
cl_int err_ = (err); \
if (err_ != CL_SUCCESS) { \
fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \
#err, err_, __FILE__, __LINE__); \
exit(1); \
} \
} while (0)
#define CLBLAST_CHECK(err) \
do { \
CLBlastStatusCode err_ = (err); \
if (err_ != CLBlastSuccess) { \
fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \
#err, err_, __FILE__, __LINE__); \
exit(1); \
} \
} while (0)
std::array<std::string, 5> dequant_str_keys = {
"KERNEL_NAME", "X_TYPE", "QUANT_K", "QUANT_R", "DEQUANT_FUNC"
};
std::array<std::string, 30> dequant_str_values = {
"dequantize_row_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
"dequantize_row_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
"dequantize_row_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
"dequantize_row_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
"dequantize_row_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
"convert_row_f16", "half", "1", "1", "convert_f16"
};
std::array<std::string, 30> dequant_mul_mat_vec_str_values = {
"dequantize_mul_mat_vec_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
"dequantize_mul_mat_vec_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
"dequantize_mul_mat_vec_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
"dequantize_mul_mat_vec_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
"dequantize_mul_mat_vec_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
"convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16"
};
std::string& replace(std::string& s, const std::string& from, const std::string& to) {
size_t pos = 0;
while ((pos = s.find(from, pos)) != std::string::npos) {
s.replace(pos, from.length(), to);
pos += to.length();
}
return s;
}
std::string generate_kernels() {
std::stringstream src;
src << program_source << '\n';
for (size_t i = 0; i < dequant_str_values.size(); i += dequant_str_keys.size()) {
std::string dequant_kernel = dequant_template;
std::string dmmv_kernel = dequant_mul_mat_vec_template;
for (size_t j = 0; j < dequant_str_keys.size(); j++) {
replace(dequant_kernel, dequant_str_keys[j], dequant_str_values[i + j]);
replace(dmmv_kernel, dequant_str_keys[j], dequant_mul_mat_vec_str_values[i + j]);
}
src << dequant_kernel << '\n';
src << dmmv_kernel << '\n';
}
return src.str();
}
static cl_platform_id platform;
static cl_device_id device;
static cl_context context;
static cl_command_queue queue;
static cl_program program;
static cl_kernel convert_row_f16_cl;
static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl;
static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl;
static bool fp16_support;
static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) {
cl_program p;
char *program_log;
size_t program_size;
size_t log_size;
int err;
program_size = strlen(program_buffer);
p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
if(err < 0) {
fprintf(stderr, "OpenCL error creating program");
exit(1);
}
const char* compile_opts = "-cl-mad-enable -cl-unsafe-math-optimizations -cl-finite-math-only -cl-fast-relaxed-math "
"-DQK4_0=32 -DQR4_0=2 -DQK4_1=32 -DQR4_1=2 -DQK5_0=32 -DQR5_0=2 -DQK5_1=32 -DQR5_1=2 -DQK8_0=32 -DQR8_0=1";
err = clBuildProgram(p, 0, NULL, compile_opts, NULL, NULL);
if(err < 0) {
clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
program_log = (char*) malloc(log_size + 1);
program_log[log_size] = '\0';
clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
fprintf(stderr, "ggml_opencl: kernel compile error:\n\n%s\n", program_log);
free(program_log);
exit(1);
}
return p;
}
void ggml_cl_init(void) {
cl_int err;
struct cl_device;
struct cl_platform {
cl_platform_id id;
unsigned number;
char name[128];
char vendor[128];
struct cl_device * devices;
unsigned n_devices;
struct cl_device * default_device;
};
struct cl_device {
struct cl_platform * platform;
cl_device_id id;
unsigned number;
cl_device_type type;
char name[128];
};
enum { NPLAT = 16, NDEV = 16 };
struct cl_platform platforms[NPLAT];
unsigned n_platforms = 0;
struct cl_device devices[NDEV];
unsigned n_devices = 0;
struct cl_device * default_device = NULL;
platform = NULL;
device = NULL;
cl_platform_id platform_ids[NPLAT];
CL_CHECK(clGetPlatformIDs(NPLAT, platform_ids, &n_platforms));
for (unsigned i = 0; i < n_platforms; i++) {
struct cl_platform * p = &platforms[i];
p->number = i;
p->id = platform_ids[i];
CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
cl_device_id device_ids[NDEV];
cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
p->n_devices = 0;
} else {
CL_CHECK(clGetDeviceIDsError);
}
p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
p->default_device = NULL;
for (unsigned j = 0; j < p->n_devices; j++) {
struct cl_device * d = &devices[n_devices];
d->number = n_devices++;
d->id = device_ids[j];
d->platform = p;
CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
p->default_device = d;
}
}
if (default_device == NULL && p->default_device != NULL) {
default_device = p->default_device;
}
}
if (n_devices == 0) {
fprintf(stderr, "ggml_opencl: could find any OpenCL devices.\n");
exit(1);
}
char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
char * user_device_string = getenv("GGML_OPENCL_DEVICE");
int user_platform_number = -1;
int user_device_number = -1;
unsigned n;
if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
user_platform_number = (int)n;
}
if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
user_device_number = (int)n;
}
if (user_platform_number != -1 && user_device_number != -1) {
cl_platform* platform = &platforms[user_platform_number];
if ((unsigned)user_device_number >= platform->n_devices) {
fprintf(stderr, "ggml_opencl: invalid device number %d\n", user_device_number);
exit(1);
}
default_device = &platform->devices[user_device_number];
} else {
struct cl_device * selected_devices = devices;
unsigned n_selected_devices = n_devices;
if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
for (unsigned i = 0; i < n_platforms; i++) {
struct cl_platform * p = &platforms[i];
if (strstr(p->name, user_platform_string) != NULL ||
strstr(p->vendor, user_platform_string) != NULL) {
user_platform_number = (int)i;
break;
}
}
if (user_platform_number == -1) {
fprintf(stderr, "ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
exit(1);
}
}
if (user_platform_number != -1) {
struct cl_platform * p = &platforms[user_platform_number];
selected_devices = p->devices;
n_selected_devices = p->n_devices;
default_device = p->default_device;
if (n_selected_devices == 0) {
fprintf(stderr, "ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
exit(1);
}
}
if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
for (unsigned i = 0; i < n_selected_devices; i++) {
struct cl_device * d = &selected_devices[i];
if (strstr(d->name, user_device_string) != NULL) {
user_device_number = d->number;
break;
}
}
if (user_device_number == -1) {
fprintf(stderr, "ggml_opencl: no device matching '%s' was found.\n", user_device_string);
exit(1);
}
}
if (user_device_number != -1) {
selected_devices = &devices[user_device_number];
n_selected_devices = 1;
default_device = &selected_devices[0];
}
GGML_ASSERT(n_selected_devices > 0);
if (default_device == NULL) {
default_device = &selected_devices[0];
}
}
fprintf(stderr, "ggml_opencl: selecting platform: '%s'\n", default_device->platform->name);
fprintf(stderr, "ggml_opencl: selecting device: '%s'\n", default_device->name);
if (default_device->type != CL_DEVICE_TYPE_GPU) {
fprintf(stderr, "ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name);
}
platform = default_device->platform->id;
device = default_device->id;
size_t ext_str_size;
clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
char* ext_buffer = (char*) malloc(sizeof(char) * ext_str_size);
clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
// Check if ext_buffer contains cl_khr_fp16
for (size_t i = 0; i < ext_str_size - 12; i++) {
if (memcmp(ext_buffer + i, "cl_khr_fp16", 11) == 0) {
fp16_support = true;
break;
}
}
free(ext_buffer);
fprintf(stderr, "ggml_opencl: device FP16 support: %s\n", fp16_support ? "true" : "false");
cl_context_properties properties[] = {
(intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)platform, 0
};
CL_CHECK((context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err));
CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
(err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
(queue = clCreateCommandQueue(context, device, 0, &err), err)
)));
const std::string kernel_src = generate_kernels();
program = build_program_from_source(context, device, kernel_src.c_str());
// FP16 to FP32 kernel
CL_CHECK((convert_row_f16_cl = clCreateKernel(program, "convert_row_f16", &err), err));
// Dequantize kernels
CL_CHECK((dequantize_row_q4_0_cl = clCreateKernel(program, "dequantize_row_q4_0", &err), err));
CL_CHECK((dequantize_row_q4_1_cl = clCreateKernel(program, "dequantize_row_q4_1", &err), err));
CL_CHECK((dequantize_row_q5_0_cl = clCreateKernel(program, "dequantize_row_q5_0", &err), err));
CL_CHECK((dequantize_row_q5_1_cl = clCreateKernel(program, "dequantize_row_q5_1", &err), err));
CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err));
// dequant mul mat kernel
CL_CHECK((dequantize_mul_mat_vec_q4_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_0", &err), err));
CL_CHECK((dequantize_mul_mat_vec_q4_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_1", &err), err));
CL_CHECK((dequantize_mul_mat_vec_q5_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_0", &err), err));
CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err));
CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err));
CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err));
}
static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) {
switch (type) {
case GGML_TYPE_Q4_0:
return &dequantize_row_q4_0_cl;
case GGML_TYPE_Q4_1:
return &dequantize_row_q4_1_cl;
case GGML_TYPE_Q5_0:
return &dequantize_row_q5_0_cl;
case GGML_TYPE_Q5_1:
return &dequantize_row_q5_1_cl;
case GGML_TYPE_Q8_0:
return &dequantize_row_q8_0_cl;
case GGML_TYPE_F16:
return &convert_row_f16_cl;
default:
return nullptr;
}
}
static cl_kernel* ggml_get_dequantize_mul_mat_vec_cl(ggml_type type) {
switch (type) {
case GGML_TYPE_Q4_0:
return &dequantize_mul_mat_vec_q4_0_cl;
case GGML_TYPE_Q4_1:
return &dequantize_mul_mat_vec_q4_1_cl;
case GGML_TYPE_Q5_0:
return &dequantize_mul_mat_vec_q5_0_cl;
case GGML_TYPE_Q5_1:
return &dequantize_mul_mat_vec_q5_1_cl;
case GGML_TYPE_Q8_0:
return &dequantize_mul_mat_vec_q8_0_cl;
case GGML_TYPE_F16:
return &convert_mul_mat_vec_f16_cl;
default:
return nullptr;
}
}
// buffer pool for cl
#define MAX_CL_BUFFERS 256
struct scoped_spin_lock {
std::atomic_flag& lock;
scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
while (lock.test_and_set(std::memory_order_acquire)) {
; // spin
}
}
~scoped_spin_lock() {
lock.clear(std::memory_order_release);
}
scoped_spin_lock(const scoped_spin_lock&) = delete;
scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
};
struct cl_buffer {
cl_mem mem;
size_t size = 0;
};
static cl_buffer g_cl_buffer_pool[MAX_CL_BUFFERS];
static std::atomic_flag g_cl_pool_lock = ATOMIC_FLAG_INIT;
static cl_mem ggml_cl_pool_malloc(size_t size, size_t * actual_size, cl_mem_flags flags) {
scoped_spin_lock lock(g_cl_pool_lock);
cl_int err;
for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
cl_buffer& b = g_cl_buffer_pool[i];
if (b.size > 0 && b.size >= size) {
cl_mem mem = b.mem;
*actual_size = b.size;
b.size = 0;
return mem;
}
}
cl_mem mem;
CL_CHECK((mem = clCreateBuffer(context, flags, size, NULL, &err), err));
*actual_size = size;
return mem;
}
static void ggml_cl_pool_free(cl_mem mem, size_t size) {
scoped_spin_lock lock(g_cl_pool_lock);
for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
cl_buffer& b = g_cl_buffer_pool[i];
if (b.size == 0) {
b.mem = mem;
b.size = size;
return;
}
}
fprintf(stderr, "WARNING: cl buffer pool full, increase MAX_CL_BUFFERS\n");
clReleaseMemObject(mem);
}
static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t offset, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cl_event* ev) {
cl_int err;
const uint64_t ne0 = src->ne[0];
const uint64_t ne1 = src->ne[1];
const uint64_t nb0 = src->nb[0];
const uint64_t nb1 = src->nb[1];
const uint64_t nb2 = src->nb[2];
const uint64_t nb3 = src->nb[3];
const enum ggml_type type = src->type;
const size_t ts = ggml_type_size(type);
const size_t bs = ggml_blck_size(type);
const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
if (nb0 == ts && nb1 == ts*ne0/bs) {
err = clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*nb1, x, 0, NULL, ev);
return err;
}
if (nb0 == ts) {
const size_t buffer_origin[3] = { offset, 0, 0 };
const size_t host_origin[3] = { 0, 0, 0 };
const size_t region[3] = { ts*ne0/bs, ne1, 1 };
err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts*ne0/bs, 0, nb1, 0, x, 0, NULL, ev);
return err;
}
for (uint64_t i1 = 0; i1 < ne1; i1++) {
// pretend the row is a matrix with cols=1
const size_t buffer_origin[3] = { offset, i1, 0 };
const size_t host_origin[3] = { 0, 0, 0 };
const size_t region[3] = { ts/bs, ne0, 1 };
err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, 0, 0, nb0, 0, ((const char *)x) + i1*nb0, 0, NULL, ev);
if (err != CL_SUCCESS) {
break;
}
}
return err;
}
static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3];
const float alpha = 1.0f;
const float beta = 0.0f;
const int x_ne = ne01 * ne00;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
size_t x_size;
size_t y_size;
size_t d_size;
cl_mem d_X;
if (src0->backend == GGML_BACKEND_CL) {
d_X = *(cl_mem*) src0->data;
} else {
d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size, CL_MEM_READ_ONLY);
}
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size, CL_MEM_READ_ONLY);
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size, CL_MEM_WRITE_ONLY);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
// copy data to device
if (src0->backend != GGML_BACKEND_CL) {
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
}
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
CL_CHECK(clFinish(queue));
// compute
cl_event ev_sgemm;
clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
clblast::Transpose::kYes, clblast::Transpose::kNo,
ne01, ne11, ne10,
alpha,
d_X, 0, ne00,
d_Y, 0, ne10,
beta,
d_D, 0, ne01,
&queue, &ev_sgemm);
if (status != clblast::StatusCode::kSuccess) {
GGML_ASSERT(false);
}
// copy dst to host
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
}
}
if (src0->backend != GGML_BACKEND_CL) {
ggml_cl_pool_free(d_X, x_size);
}
ggml_cl_pool_free(d_Y, y_size);
ggml_cl_pool_free(d_D, d_size);
}
static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
GGML_ASSERT(fp16_support);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int nb10 = src1->nb[0];
const int nb11 = src1->nb[1];
const int nb12 = src1->nb[2];
const int nb13 = src1->nb[3];
const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3];
const ggml_fp16_t alpha = ggml_fp32_to_fp16(1.0f);
const ggml_fp16_t beta = ggml_fp32_to_fp16(0.0f);
const int x_ne = ne01 * ne00;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
size_t x_size;
size_t y_size;
size_t d_size;
cl_mem d_X;
if (src0->backend == GGML_BACKEND_CL) {
d_X = *(cl_mem*) src0->data;
} else {
d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size, CL_MEM_READ_ONLY);
}
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * y_ne, &y_size, CL_MEM_READ_ONLY);
cl_mem d_D = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * d_ne, &d_size, CL_MEM_WRITE_ONLY);
bool src1_cont_rows = nb10 == sizeof(float);
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
// copy src0 to device
if (src0->backend != GGML_BACKEND_CL) {
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
}
// convert src1 to fp16
// TODO: use multiple threads
ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
if (src1_cont_rows) {
if (src1_cont_cols) {
ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
}
else {
for (int64_t i01 = 0; i01 < ne11; i01++) {
ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
}
}
}
else {
for (int64_t i01 = 0; i01 < ne11; i01++) {
for (int64_t i00 = 0; i00 < ne10; i00++) {
// very slow due to no inlining
tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
}
}
}
// copy src1 to device
CL_CHECK(clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_fp16_t) * y_ne, tmp, 0, NULL, NULL));
CL_CHECK(clFinish(queue));
// compute
cl_event ev_sgemm;
clblast::StatusCode status = clblast::Gemm<cl_half>(clblast::Layout::kColMajor,
clblast::Transpose::kYes, clblast::Transpose::kNo,
ne01, ne11, ne10,
alpha,
d_X, 0, ne00,
d_Y, 0, ne10,
beta,
d_D, 0, ne01,
&queue, &ev_sgemm);
if (status != clblast::StatusCode::kSuccess) {
GGML_ASSERT(false);
}
// copy dst to host, then convert to float
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
ggml_fp16_to_fp32_row(tmp, d, d_ne);
}
}
if (src0->backend != GGML_BACKEND_CL) {
ggml_cl_pool_free(d_X, x_size);
}
ggml_cl_pool_free(d_Y, y_size);
ggml_cl_pool_free(d_D, d_size);
}
static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[3];
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3];
const ggml_type type = src0->type;
const bool mul_mat_vec = ne11 == 1;
const float alpha = 1.0f;
const float beta = 0.0f;
const int x_ne = ne01 * ne00;
const int y_ne = ne11 * ne10;
const int d_ne = ne11 * ne01;
const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
size_t x_size;
size_t y_size;
size_t d_size;
size_t q_size;
cl_mem d_X;
if (!mul_mat_vec) {
d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size, CL_MEM_READ_WRITE);
}
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size, CL_MEM_READ_ONLY);
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size, CL_MEM_WRITE_ONLY);
cl_mem d_Q;
if (src0->backend == GGML_BACKEND_CPU) {
d_Q = ggml_cl_pool_malloc(q_sz, &q_size, CL_MEM_READ_ONLY);
}
cl_kernel* to_fp32_cl = ggml_get_to_fp32_cl(type);
cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type);
GGML_ASSERT(to_fp32_cl != nullptr);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
cl_event ev_sgemm;
// copy src0 to device if necessary
if (src0->backend == GGML_BACKEND_CPU) {
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, NULL));
} else if (src0->backend == GGML_BACKEND_CL) {
d_Q = *(cl_mem*) src0->data;
} else {
GGML_ASSERT(false);
}
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
// copy src1 to device
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
// compute
const size_t global = ne01 * CL_DMMV_BLOCK_SIZE;
const size_t local = CL_DMMV_BLOCK_SIZE;
const cl_int ncols = ne00;
CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL));
CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y));
CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D));
CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols));
CL_CHECK(clFinish(queue));
CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, 0, NULL, &ev_sgemm));
} else { // general dequantization kernel + CLBlast matrix matrix multiplication
// convert src0 to fp32 on device
const size_t global = x_ne;
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
CL_CHECK(clFinish(queue));
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, NULL, 0, NULL, NULL));
// copy src1 to device
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
// wait for conversion
CL_CHECK(clFinish(queue));
// compute
clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
clblast::Transpose::kYes, clblast::Transpose::kNo,
ne01, ne11, ne10,
alpha,
d_X, 0, ne00,
d_Y, 0, ne10,
beta,
d_D, 0, ne01,
&queue, &ev_sgemm);
if (status != clblast::StatusCode::kSuccess) {
GGML_ASSERT(false);
}
}
// copy dst to host
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
clReleaseEvent(ev_sgemm);
}
}
if (!mul_mat_vec) {
ggml_cl_pool_free(d_X, x_size);
}
ggml_cl_pool_free(d_Y, y_size);
ggml_cl_pool_free(d_D, d_size);
if (src0->backend == GGML_BACKEND_CPU) {
ggml_cl_pool_free(d_Q, q_size);
}
}
bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
const int64_t ne10 = src1->ne[0];
const int64_t ne0 = dst->ne[0];
const int64_t ne1 = dst->ne[1];
// TODO: find the optimal values for these
if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
src1->type == GGML_TYPE_F32 &&
dst->type == GGML_TYPE_F32 &&
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_CL)) {
return true;
}
return false;
}
bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
// If device doesn't support FP16
if (!fp16_support) {
return false;
}
size_t src0_sz = ggml_nbytes(src0);
size_t src1_sz = ggml_nbytes(src1);
// mul_mat_q: src0 is converted to fp32 on device
size_t mul_mat_q_transfer = src0_sz + src1_sz;
// mul_mat_f16: src1 is converted to fp16 on cpu
size_t mul_mat_f16_transfer = src0_sz + sizeof(ggml_fp16_t) * ggml_nelements(src1);
// choose the smaller one to transfer to the device
// TODO: this is not always the best choice due to the overhead of converting to fp16
return mul_mat_f16_transfer < mul_mat_q_transfer;
}
void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize) {
GGML_ASSERT(ggml_cl_can_mul_mat(src0, src1, dst));
if (src0->type == GGML_TYPE_F32) {
ggml_cl_mul_mat_f32(src0, src1, dst);
}
else if (src0->type == GGML_TYPE_F16) {
if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
ggml_cl_mul_mat_f16(src0, src1, dst, wdata, wsize);
}
else {
ggml_cl_mul_mat_q_f32(src0, src1, dst);
}
}
else if (ggml_is_quantized(src0->type)) {
ggml_cl_mul_mat_q_f32(src0, src1, dst);
}
else {
GGML_ASSERT(false);
}
}
size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
return ggml_nelements(src1) * sizeof(ggml_fp16_t);
}
return 0;
}
void ggml_cl_transform_tensor(ggml_tensor * tensor) {
const int64_t ne0 = tensor->ne[0];
const int64_t ne1 = tensor->ne[1];
const int64_t ne2 = tensor->ne[2];
const int64_t ne3 = tensor->ne[3];
const ggml_type type = tensor->type;
const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type);
size_t q_size;
cl_mem* dst = (cl_mem*) malloc(sizeof(cl_mem));
*dst = ggml_cl_pool_malloc(q_sz, &q_size, CL_MEM_READ_ONLY);
// copy tensor to device
for (int64_t i3 = 0; i3 < ne3; i3++) {
for (int64_t i2 = 0; i2 < ne2; i2++) {
int i = i3*ne2 + i2;
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, *dst, i*ne0*ne1, tensor, i3, i2, NULL));
}
}
CL_CHECK(clFinish(queue));
tensor->data = dst;
tensor->backend = GGML_BACKEND_CL;
}