mirror of
https://git.adityakumar.xyz/llama.cpp.git
synced 2024-11-08 15:09:44 +00:00
78ca9838ee
This is a breaking change that's going to give you three benefits: 1. Your inference commands should load 100x faster 2. You may be able to safely load models 2x larger 3. You can run many concurrent inference processes This was accomplished by changing the file format so we can mmap() weights directly into memory without having to read() or copy them thereby ensuring the kernel can make its file cache pages directly accessible to our inference processes; and secondly, that the file cache pages are much less likely to get evicted (which would force loads to hit disk) because they're no longer competing with memory pages that were needlessly created by gigabytes of standard i/o. The new file format supports single-file models like LLaMA 7b, and it also supports multi-file models like LLaMA 13B. Our Python tool now merges the foo.1, foo.2, etc. files back into a single file so that the C++ code which maps it doesn't need to reshape data every time. That's made llama.cpp so much simpler. Much of its load code has now been deleted. Furthermore, this change ensures that tensors are aligned properly on a 32-byte boundary. That opens the door to seeing if we can get additional performance gains on some microprocessors, by using ops that require memory alignment. Lastly note that both POSIX and the Windows platform are supported Fixes #91
299 lines
9.8 KiB
Python
299 lines
9.8 KiB
Python
# Author: github.com/ductai199x
|
|
import argparse
|
|
import os
|
|
import struct
|
|
|
|
import numpy as np
|
|
import torch
|
|
from numba import njit
|
|
from tqdm.auto import tqdm
|
|
|
|
|
|
def read_header(fin):
|
|
values = struct.unpack("i" * 9, fin.read(4 * 9))
|
|
_, _, vocab_size, dim, multiple_of, n_heads, n_layers, rot, ftype = values
|
|
return {
|
|
"vocab_size": vocab_size,
|
|
"dim": dim,
|
|
"multiple_of": multiple_of,
|
|
"n_heads": n_heads,
|
|
"n_layers": n_layers,
|
|
}, ftype
|
|
|
|
|
|
def read_tokens(fin, vocab_size):
|
|
tokens = []
|
|
for _ in range(vocab_size):
|
|
text_len = struct.unpack("i", fin.read(4))[0]
|
|
text_bytes = fin.read(text_len)
|
|
try:
|
|
text = text_bytes.decode("utf-8")
|
|
except UnicodeDecodeError:
|
|
text = text_bytes.decode("utf-8", "replace")
|
|
score = struct.unpack("f", fin.read(4))[0]
|
|
tokens.append((text, score))
|
|
return tokens
|
|
|
|
|
|
@njit
|
|
def dequantize_weights_numba(fin_data, n_rows, n_cols):
|
|
qk = 32
|
|
nb = n_cols // qk
|
|
bs = 4 + (qk // 2)
|
|
|
|
weights = np.zeros((n_rows, n_cols), dtype=np.float32)
|
|
data_pos = 0
|
|
|
|
for row in range(n_rows):
|
|
for block in range(nb):
|
|
d = np.frombuffer(fin_data[data_pos : data_pos + 4], dtype=np.float32)[0]
|
|
data_pos += 4
|
|
packed_values = fin_data[data_pos : data_pos + (qk // 2)]
|
|
data_pos += qk // 2
|
|
|
|
for i in range(qk // 2):
|
|
packed_value = packed_values[i]
|
|
v0 = np.float32((packed_value & 0b00001111) - 8) * d
|
|
v1 = np.float32((packed_value >> 4) - 8) * d
|
|
|
|
weights[row, block * qk + 2 * i] = v0
|
|
weights[row, block * qk + 2 * i + 1] = v1
|
|
|
|
return weights
|
|
|
|
|
|
def dequantize_weights(fin, n_rows, n_cols):
|
|
qk = 32
|
|
nb = n_cols // qk
|
|
data_size = n_rows * n_cols // 2 + n_rows * nb * 4
|
|
fin_data = fin.read(data_size)
|
|
return dequantize_weights_numba(fin_data, n_rows, n_cols)
|
|
|
|
|
|
def read_variables(fin):
|
|
model = {}
|
|
pbar = tqdm(total=os.path.getsize(fin.name), unit="B", unit_scale=True, desc="Reading variables")
|
|
while True:
|
|
start_pos = fin.tell()
|
|
try:
|
|
n_dims, name_length, ftype_cur = struct.unpack("iii", fin.read(4 * 3))
|
|
except struct.error:
|
|
break
|
|
|
|
shape = tuple(struct.unpack("i" * n_dims, fin.read(4 * n_dims)))
|
|
shape = shape[::-1]
|
|
name = fin.read(name_length).decode("utf-8")
|
|
|
|
# ensure tensor data is aligned
|
|
tensor_data_offset = fin.tell()
|
|
tensor_data_offset = (tensor_data_offset + 31) & -32
|
|
fin.seek(tensor_data_offset)
|
|
|
|
if ftype_cur == 2:
|
|
# 4-bit quantized weights
|
|
dtype = np.uint8
|
|
data = dequantize_weights(fin, shape[0], shape[1])
|
|
data = data.reshape(shape)
|
|
elif ftype_cur == 0:
|
|
dtype = np.float32
|
|
data_size = np.prod(shape)
|
|
data = np.fromfile(fin, dtype=dtype, count=data_size).reshape(shape)
|
|
elif ftype_cur == 1:
|
|
dtype = np.float16
|
|
data_size = np.prod(shape)
|
|
data = np.fromfile(fin, dtype=dtype, count=data_size).reshape(shape)
|
|
|
|
model[name] = torch.tensor(data, dtype=torch.float32 if dtype == np.float32 else torch.float16)
|
|
|
|
pbar.update(fin.tell() - start_pos)
|
|
|
|
return model
|
|
|
|
|
|
def convert_to_hf_format(model, hparams):
|
|
# This works for llama 7B, need to test with other models
|
|
n_layers = hparams["n_layers"]
|
|
n_heads = hparams["n_heads"]
|
|
dim = hparams["dim"]
|
|
dims_per_head = dim // n_heads
|
|
base = 10000.0
|
|
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
|
|
|
|
# permute for sliced rotary
|
|
def permute(w):
|
|
return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)
|
|
|
|
state_dict = {}
|
|
for layer_i in range(n_layers):
|
|
state_dict.update(
|
|
{
|
|
f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(
|
|
model[f"layers.{layer_i}.attention.wq.weight"]
|
|
),
|
|
f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(
|
|
model[f"layers.{layer_i}.attention.wk.weight"]
|
|
),
|
|
f"model.layers.{layer_i}.self_attn.v_proj.weight": model[
|
|
f"layers.{layer_i}.attention.wv.weight"
|
|
],
|
|
f"model.layers.{layer_i}.self_attn.o_proj.weight": model[
|
|
f"layers.{layer_i}.attention.wo.weight"
|
|
],
|
|
f"model.layers.{layer_i}.mlp.gate_proj.weight": model[
|
|
f"layers.{layer_i}.feed_forward.w1.weight"
|
|
],
|
|
f"model.layers.{layer_i}.mlp.down_proj.weight": model[
|
|
f"layers.{layer_i}.feed_forward.w2.weight"
|
|
],
|
|
f"model.layers.{layer_i}.mlp.up_proj.weight": model[
|
|
f"layers.{layer_i}.feed_forward.w3.weight"
|
|
],
|
|
f"model.layers.{layer_i}.input_layernorm.weight": model[
|
|
f"layers.{layer_i}.attention_norm.weight"
|
|
],
|
|
f"model.layers.{layer_i}.post_attention_layernorm.weight": model[
|
|
f"layers.{layer_i}.ffn_norm.weight"
|
|
],
|
|
}
|
|
)
|
|
state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
|
|
state_dict.update(
|
|
{
|
|
"model.embed_tokens.weight": model["tok_embeddings.weight"],
|
|
"model.norm.weight": model["norm.weight"],
|
|
"lm_head.weight": model["output.weight"],
|
|
}
|
|
)
|
|
|
|
return state_dict
|
|
|
|
|
|
def chat(model, hparams, llama_dir):
|
|
from transformers import (GenerationConfig, LlamaForCausalLM,
|
|
LlamaTokenizer, StoppingCriteria,
|
|
StoppingCriteriaList)
|
|
from transformers.models.llama.configuration_llama import LlamaConfig
|
|
|
|
class StoppingCriteriaSub(StoppingCriteria):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, stops=[]):
|
|
print(tokenizer.decode(input_ids[0]), end="", flush=True)
|
|
if input_ids[0][-1] == 13:
|
|
return True
|
|
|
|
return False
|
|
|
|
config = LlamaConfig(
|
|
vocab_size=hparams["vocab_size"],
|
|
dim=hparams["dim"],
|
|
num_hidden_layers=hparams["n_layers"],
|
|
num_attention_heads=hparams["n_heads"],
|
|
)
|
|
|
|
llama = LlamaForCausalLM(config=config)
|
|
llama.load_state_dict(state_dict=model, strict=True)
|
|
tokenizer = LlamaTokenizer.from_pretrained(llama_dir)
|
|
|
|
device = torch.device("cpu")
|
|
llama = llama.to(device)
|
|
|
|
ctx = """You are AI.
|
|
This is a dialog, where User interacts with AI. AI is helpful, kind, obedient, honest, respectful, direct, concise, should try to protect User's privacy, and knows its own limits. Also, AI must answer User and AI cannot stop the conversation by itself.
|
|
User: Hello, AI.
|
|
AI: Hello! How can I assist you today?
|
|
"""
|
|
print(ctx.rstrip("\n"))
|
|
while True:
|
|
print("-" * 60)
|
|
prompt = input(f"User: ")
|
|
if ctx != "":
|
|
ctx = ctx + "User: " + prompt + "\n"
|
|
else:
|
|
ctx = prompt + "\nAI:"
|
|
|
|
ctx = (ctx[-1920:]) if len(ctx) >= 2048 else ctx
|
|
|
|
print("-" * 60)
|
|
if len(ctx.strip()) > 0:
|
|
input_ids = tokenizer(ctx, return_tensors="pt")["input_ids"].to(device)
|
|
generation_config = GenerationConfig(
|
|
temperature=0.8,
|
|
top_p=0.95,
|
|
top_k=50,
|
|
repetition_penalty=1.1764,
|
|
)
|
|
with torch.no_grad():
|
|
generation_output = llama.generate(
|
|
input_ids=input_ids,
|
|
generation_config=generation_config,
|
|
return_dict_in_generate=True,
|
|
output_scores=True,
|
|
max_length=2048,
|
|
do_sample=True,
|
|
stopping_criteria=StoppingCriteriaList([StoppingCriteriaSub()]),
|
|
)
|
|
s = generation_output.sequences[0]
|
|
decoded = tokenizer.decode(s)
|
|
ctx = decoded + "\n"
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--input_dir", "-i", type=str, required=True, help="The input directory containing the ggml files."
|
|
)
|
|
parser.add_argument(
|
|
"--prefix",
|
|
"-p",
|
|
type=str,
|
|
required=True,
|
|
help="The prefix of the ggml files (ggml-model-f16 or ggml-model-q4_0).",
|
|
)
|
|
parser.add_argument(
|
|
"--hf",
|
|
action="store_true",
|
|
help="Whether to save the model in the huggingface format. (default: False)",
|
|
)
|
|
parser.add_argument(
|
|
"--chat", "-c", action="store_true", help="Whether to open a chat with the model. (default: False)"
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
llama_dir = os.path.abspath(f"{args.input_dir}/../")
|
|
|
|
ggml_files = sorted(
|
|
[f"{args.input_dir}/{f}" for f in os.listdir(args.input_dir) if f.startswith(args.prefix)]
|
|
)
|
|
|
|
fin = open(ggml_files[0], "rb")
|
|
hparams, ftype = read_header(fin)
|
|
tokens = read_tokens(fin, hparams["vocab_size"])
|
|
model = read_variables(fin)
|
|
|
|
for f in tqdm(ggml_files[1:]):
|
|
fin = open(f, "rb")
|
|
read_header(fin)
|
|
read_tokens(fin, hparams["vocab_size"])
|
|
model.update(read_variables(fin))
|
|
|
|
if args.hf:
|
|
model = convert_to_hf_format(model, hparams)
|
|
|
|
pth_ckpt = {
|
|
"state_dict": model,
|
|
"hparams": hparams,
|
|
"tokens": tokens,
|
|
}
|
|
|
|
torch.save(pth_ckpt, f"{args.input_dir}/{args.prefix}-to-torch.pth")
|
|
|
|
if args.chat:
|
|
if not args.hf:
|
|
model = convert_to_hf_format(model, hparams)
|
|
chat(model, hparams, llama_dir)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|