llama.cpp/ggml-metal.metal
Kawrakow 785829dfe8
Faster Q4_K on Metal (#2290)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-07-20 15:18:43 +03:00

1868 lines
62 KiB
Metal

#include <metal_stdlib>
using namespace metal;
#define MAX(x, y) ((x) > (y) ? (x) : (y))
#define QK4_0 32
#define QR4_0 2
typedef struct {
half d; // delta
uint8_t qs[QK4_0 / 2]; // nibbles / quants
} block_q4_0;
#define QK4_1 32
typedef struct {
half d; // delta
half m; // min
uint8_t qs[QK4_1 / 2]; // nibbles / quants
} block_q4_1;
static void dequantize_row_q4_0(device const block_q4_0 * x, device float * y, int k) {
const int qk = QK4_0;
assert(k % qk == 0);
const int nb = k / qk;
for (int i = 0; i < nb; i++) {
const half d = x[i].d;
for (int j = 0; j < qk/2; ++j) {
const int x0 = (x[i].qs[j] & 0x0F) - 8;
const int x1 = (x[i].qs[j] >> 4) - 8;
y[i*qk + j + 0 ] = x0*d;
y[i*qk + j + qk/2] = x1*d;
}
}
}
static void dequantize_row_q4_1(device const block_q4_1 * x, device float * y, int k) {
const int qk = QK4_1;
assert(k % qk == 0);
const int nb = k / qk;
for (int i = 0; i < nb; i++) {
const half d = x[i].d;
const half m = x[i].m;
for (int j = 0; j < qk/2; ++j) {
const int x0 = (x[i].qs[j] & 0x0F);
const int x1 = (x[i].qs[j] >> 4);
y[i*qk + j + 0 ] = x0*d + m;
y[i*qk + j + qk/2] = x1*d + m;
}
}
}
kernel void kernel_add(
device const float * src0,
device const float * src1,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] + src1[tpig];
}
kernel void kernel_mul(
device const float * src0,
device const float * src1,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * src1[tpig];
}
// assumption: src1 is a row
// broadcast src1 into src0
kernel void kernel_mul_row(
device const float * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * src1[tpig % ne00];
}
kernel void kernel_scale(
device const float * src0,
device float * dst,
constant float & scale,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = src0[tpig] * scale;
}
kernel void kernel_silu(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
float x = src0[tpig];
dst[tpig] = x / (1.0f + exp(-x));
}
kernel void kernel_relu(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
dst[tpig] = max(0.0f, src0[tpig]);
}
constant float GELU_COEF_A = 0.044715f;
constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
kernel void kernel_gelu(
device const float * src0,
device float * dst,
uint tpig[[thread_position_in_grid]]) {
float x = src0[tpig];
dst[tpig] = 0.5f*x*(1.0f + tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
}
kernel void kernel_soft_max(
device const float * src0,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
threadgroup float * buf [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig[2];
const int64_t i02 = tgpig[1];
const int64_t i01 = tgpig[0];
device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
// parallel max
buf[tpitg[0]] = -INFINITY;
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
buf[tpitg[0]] = MAX(buf[tpitg[0]], psrc0[i00]);
}
// reduce
threadgroup_barrier(mem_flags::mem_threadgroup);
for (uint i = ntg[0]/2; i > 0; i /= 2) {
if (tpitg[0] < i) {
buf[tpitg[0]] = MAX(buf[tpitg[0]], buf[tpitg[0] + i]);
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
// broadcast
if (tpitg[0] == 0) {
buf[0] = buf[0];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
const float max = buf[0];
// parallel sum
buf[tpitg[0]] = 0.0f;
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
buf[tpitg[0]] += exp(psrc0[i00] - max);
}
// reduce
threadgroup_barrier(mem_flags::mem_threadgroup);
for (uint i = ntg[0]/2; i > 0; i /= 2) {
if (tpitg[0] < i) {
buf[tpitg[0]] += buf[tpitg[0] + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
// broadcast
if (tpitg[0] == 0) {
buf[0] = buf[0];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
const float sum = buf[0];
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
pdst[i00] = exp(psrc0[i00] - max) / sum;
}
}
kernel void kernel_diag_mask_inf(
device const float * src0,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int & n_past,
uint3 tpig[[thread_position_in_grid]]) {
const int64_t i02 = tpig[2];
const int64_t i01 = tpig[1];
const int64_t i00 = tpig[0];
if (i00 > n_past + i01) {
dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY;
} else {
dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00];
}
}
kernel void kernel_get_rows_f16(
device const void * src0,
device const int * src1,
device float * dst,
constant int64_t & ne00,
constant uint64_t & nb01,
constant uint64_t & nb1,
uint tpig[[thread_position_in_grid]]) {
const int i = tpig;
const int r = ((device int32_t *) src1)[i];
for (int j = 0; j < ne00; j++) {
dst[i*nb1 + j] = ((device half *) ((device char *) src0 + r*nb01))[j];
}
}
kernel void kernel_get_rows_q4_0(
device const void * src0,
device const int * src1,
device float * dst,
constant int64_t & ne00,
constant uint64_t & nb01,
constant uint64_t & nb1,
uint tpig[[thread_position_in_grid]]) {
const int i = tpig;
const int r = ((device int32_t *) src1)[i];
dequantize_row_q4_0(
(device const block_q4_0 *) ((device char *) src0 + r*nb01),
(device float *) ((device char *) dst + i*nb1), ne00);
}
kernel void kernel_get_rows_q4_1(
device const void * src0,
device const int * src1,
device float * dst,
constant int64_t & ne00,
constant uint64_t & nb01,
constant uint64_t & nb1,
uint tpig[[thread_position_in_grid]]) {
const int i = tpig;
const int r = ((device int32_t *) src1)[i];
dequantize_row_q4_1(
(device const block_q4_1 *) ((device char *) src0 + r*nb01),
(device float *) ((device char *) dst + i*nb1), ne00);
}
kernel void kernel_norm(
device const void * src0,
device float * dst,
constant int64_t & ne00,
constant uint64_t & nb01,
constant float & eps,
threadgroup float * sum [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint ntg[[threads_per_threadgroup]]) {
device const float * x = (device const float *) ((device const char *) src0 + tgpig*nb01);
// MEAN
// parallel sum
sum[tpitg] = 0.0f;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
sum[tpitg] += x[i00];
}
// reduce
threadgroup_barrier(mem_flags::mem_threadgroup);
for (uint i = ntg/2; i > 0; i /= 2) {
if (tpitg < i) {
sum[tpitg] += sum[tpitg + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
// broadcast
if (tpitg == 0) {
sum[0] /= ne00;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
const float mean = sum[0];
// recenter
device float * y = dst + tgpig*ne00;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
y[i00] = x[i00] - mean;
}
// VARIANCE
// parallel sum
sum[tpitg] = 0.0f;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
sum[tpitg] += y[i00] * y[i00];
}
// reduce
threadgroup_barrier(mem_flags::mem_threadgroup);
for (uint i = ntg/2; i > 0; i /= 2) {
if (tpitg < i) {
sum[tpitg] += sum[tpitg + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
// broadcast
if (tpitg == 0) {
sum[0] /= ne00;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
const float variance = sum[0];
const float scale = 1.0f/sqrt(variance + eps);
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
y[i00] = y[i00] * scale;
}
}
kernel void kernel_rms_norm(
device const void * src0,
device float * dst,
constant int64_t & ne00,
constant uint64_t & nb01,
constant float & eps,
threadgroup float * sum [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
uint tpitg[[thread_position_in_threadgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]],
uint tiisg[[thread_index_in_simdgroup]],
uint ntg[[threads_per_threadgroup]]) {
device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01);
device const float * x_scalar = (device const float *) x;
float4 sumf=0;
float all_sum=0;
// parallel sum
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
sumf += x[i00] * x[i00];
}
all_sum = sumf[0] + sumf[1] + sumf[2] + sumf[3];
all_sum = simd_sum(all_sum);
if (tiisg == 0) {
sum[sgitg] = all_sum;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// broadcast, simd group number is ntg / 32
for (int i = ntg / 32 / 2; i > 0; i /= 2) {
if (tpitg < i) {
sum[tpitg] += sum[tpitg + i];
}
}
if (tpitg == 0) {
for (int i = 4 * (ne00 / 4); i < ne00; i++) {sum[0] += x_scalar[i];}
sum[0] /= ne00;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
const float mean = sum[0];
const float scale = 1.0f/sqrt(mean + eps);
device float4 * y = (device float4 *) (dst + tgpig*ne00);
device float * y_scalar = (device float *) y;
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
y[i00] = x[i00] * scale;
}
if (tpitg == 0) {
for (int i00 = 4 * (ne00 / 4); i00 < ne00; i00++) {y_scalar[i00] = x_scalar[i00] * scale;}
}
}
// function for calculate inner product between a q4_0 block and 32 floats (yl), sumy is SUM(yl[i])
float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl) {
float d = qb_curr->d;
float4 acc = 0.f;
device uint16_t * qs = ((device uint16_t *)qb_curr + 1);
for (int i = 0; i < 16; i+=2) {
acc[0] += yl[i] * (qs[i / 2] & 0x000F);
acc[1] += yl[i + 16] * (qs[i / 2] & 0x00F0);
acc[2] += yl[i + 1] * (qs[i / 2] & 0x0F00);
acc[3] += yl[i + 17] * (qs[i / 2] & 0xF000);
}
return d * (sumy * -8.f + acc[0] + acc[1]/16.f + acc[2]/256.f + acc[3]/4096.f);
}
// function for calculate inner product between a q4_1 block and 32 floats (yl), sumy is SUM(yl[i])
float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl) {
float d = qb_curr->d;
float m = qb_curr->m;
float4 acc = 0.f;
device uint16_t * qs = ((device uint16_t *)qb_curr + 2);
for (int i = 0; i < 16; i+=2) {
acc[0] += yl[i] * (qs[i / 2] & 0x000F);
acc[1] += yl[i + 16] * (qs[i / 2] & 0x00F0);
acc[2] += yl[i + 1] * (qs[i / 2] & 0x0F00);
acc[3] += yl[i + 17] * (qs[i / 2] & 0xF000);
}
return d * (acc[0] + acc[1]/16.f + acc[2]/256.f + acc[3]/4096.f) + sumy * m;
}
// putting them in the kernel cause a significant performance penalty
#define N_DST 4 // each SIMD group works on 4 rows
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
template<typename block_q_type>
void mul_vec_q_n_f32(device const void * src0, device const float * src1, device float * dst,
int64_t ne00, int64_t ne10, int64_t ne0, int64_t ne01,
uint2 tgpig, uint tiisg, uint sgitg) {
const int nb = ne00/QK4_0;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
device const block_q_type * x = (device const block_q_type *) src0 + (r0 * N_SIMDGROUP + sgitg) * N_DST * nb;
device const float * y = (device const float *) src1 + r1*ne10;
float4 y_curr[8]; // src1 vector cache
float sumf[N_DST]={0.f}, all_sum;
thread float * yl=(thread float *)y_curr;
// each thread in a SIMD group deals with 1 block.
for (int column = 0; column < nb / N_SIMDWIDTH; column++) {
float sumy = 0;
for (int i = 0; i < QK4_0 / 4; i++) {
y_curr[i] = *((device float4 *)(y + N_SIMDWIDTH * (tiisg + column * QK4_0)) + i);
sumy += y_curr[i][0] + y_curr[i][1] + y_curr[i][2] + y_curr[i][3];
}
for (int row = 0; row < N_DST; row++) {
sumf[row] += block_q_n_dot_y(x+(tiisg + row * nb + column * N_SIMDWIDTH), sumy, yl);
}
}
// from now loads two rows every time and 16 blocks per row
int ir = tiisg / (N_SIMDWIDTH / 2);
int ib = tiisg % (N_SIMDWIDTH / 2);
for (int ind = 0; ind < (nb % N_SIMDWIDTH + N_SIMDWIDTH / 2 - 1)/(N_SIMDWIDTH / 2); ind++) {
int nb_start = (nb / N_SIMDWIDTH) * N_SIMDWIDTH + ind * (N_SIMDWIDTH / 2); //where the left blocks start
float sumy = 0;
for (int i = 0; i < QK4_0 / 4; i++) {
y_curr[i] = *((device float4 *)(y + (nb_start + ib) * QK4_0) + i);
sumy += y_curr[i][0] + y_curr[i][1] + y_curr[i][2] + y_curr[i][3];
}
for (int row = 0; row < N_DST; row+=2) {
if (nb_start + ib < nb) {
sumf[row + ir] += block_q_n_dot_y(x + (nb_start + ib + (row + ir) * nb), sumy, yl);
}
}
}
for (int row = 0; row < N_DST; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0 && ((r0 * N_SIMDGROUP + sgitg) * N_DST + row) < ne01) {
dst[r1*ne0 + (r0 * N_SIMDGROUP + sgitg) * N_DST + row] = all_sum;
}
}
}
kernel void kernel_mul_mat_q4_0_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne10,
constant int64_t & ne0,
constant int64_t & ne01[[buffer(4)]],
uint2 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
mul_vec_q_n_f32<block_q4_0>(src0,src1,dst,ne00,ne10,ne0,ne01,tgpig,tiisg,sgitg);
}
kernel void kernel_mul_mat_q4_1_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne10,
constant int64_t & ne0,
constant int64_t & ne01[[buffer(4)]],
uint2 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
mul_vec_q_n_f32<block_q4_1>(src0,src1,dst,ne00,ne10,ne0,ne01,tgpig,tiisg,sgitg);
}
kernel void kernel_mul_mat_f16_f32(
device const char * src0,
device const char * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
threadgroup float * sum [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpig[[thread_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 tptg[[threads_per_threadgroup]]) {
const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
const int64_t im = tgpig.z;
device const half * x = (device const half *) (src0 + r0*nb01 + im*nb02);
device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
sum[tpitg.x] = 0.0f;
for (int i = tpitg.x; i < ne00; i += tptg.x) {
sum[tpitg.x] += (float) x[i] * (float) y[i];
}
// accumulate the sum from all threads in the threadgroup
threadgroup_barrier(mem_flags::mem_threadgroup);
for (uint i = tptg.x/2; i > 0; i /= 2) {
if (tpitg.x < i) {
sum[tpitg.x] += sum[tpitg.x + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
if (tpitg.x == 0) {
dst[im*ne1*ne0 + r1*ne0 + r0] = sum[0];
}
}
kernel void kernel_alibi_f32(
device const float * src0,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
constant float & m0,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig[2];
const int64_t i02 = tgpig[1];
const int64_t i01 = tgpig[0];
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
const int64_t i3 = n / (ne2*ne1*ne0);
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
float m_k = pow(m0, i2 + 1);
for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
dst_data[i00] = src[0] + m_k * (i00 - ne00 + 1);
}
}
kernel void kernel_rope(
device const void * src0,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
constant int & n_past,
constant int & n_dims,
constant int & mode,
constant float & freq_base,
constant float & freq_scale,
uint3 tpig[[thread_position_in_grid]]) {
const int64_t i3 = tpig[2];
const int64_t i2 = tpig[1];
const int64_t i1 = tpig[0];
const bool is_neox = mode & 2;
const float theta_scale = pow(freq_base, -2.0f/n_dims);
const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
float theta = freq_scale * (float)p;
if (!is_neox) {
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
const float cos_theta = cos(theta);
const float sin_theta = sin(theta);
theta *= theta_scale;
device const float * const src = (device float *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
device float * dst_data = (device float *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = src[0];
const float x1 = src[1];
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[1] = x0*sin_theta + x1*cos_theta;
}
} else {
// TODO: implement
}
}
kernel void kernel_cpy_f16_f16(
device const half * src0,
device half * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig[2];
const int64_t i02 = tgpig[1];
const int64_t i01 = tgpig[0];
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
const int64_t i3 = n / (ne2*ne1*ne0);
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
device const half * src = (device half *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
dst_data[i00] = src[0];
}
}
kernel void kernel_cpy_f32_f16(
device const float * src0,
device half * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig[2];
const int64_t i02 = tgpig[1];
const int64_t i01 = tgpig[0];
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
const int64_t i3 = n / (ne2*ne1*ne0);
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
dst_data[i00] = src[0];
}
}
kernel void kernel_cpy_f32_f32(
device const float * src0,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne03,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb03,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant int64_t & ne3,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
constant uint64_t & nb3,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t i03 = tgpig[2];
const int64_t i02 = tgpig[1];
const int64_t i01 = tgpig[0];
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
const int64_t i3 = n / (ne2*ne1*ne0);
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
dst_data[i00] = src[0];
}
}
//============================================ k-quants ======================================================
#ifndef QK_K
#define QK_K 256
#else
static_assert(QK_K == 256 || QK_K == 64, "QK_K must be 256 or 64");
#endif
#if QK_K == 256
#define K_SCALE_SIZE 12
#else
#define K_SCALE_SIZE 4
#endif
typedef struct {
uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
uint8_t qs[QK_K/4]; // quants
half d; // super-block scale for quantized scales
half dmin; // super-block scale for quantized mins
} block_q2_K;
// 84 bytes / block
typedef struct {
uint8_t hmask[QK_K/8]; // quants - high bit
uint8_t qs[QK_K/4]; // quants - low 2 bits
#if QK_K == 64
uint8_t scales[2];
#else
uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits
#endif
half d; // super-block scale
} block_q3_K;
#if QK_K == 64
typedef struct {
half d[2]; // super-block scales/mins
uint8_t scales[2];
uint8_t qs[QK_K/2]; // 4-bit quants
} block_q4_K;
#else
typedef struct {
half d; // super-block scale for quantized scales
half dmin; // super-block scale for quantized mins
uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
uint8_t qs[QK_K/2]; // 4--bit quants
} block_q4_K;
#endif
#if QK_K == 64
typedef struct {
half d; // super-block scales/mins
int8_t scales[QK_K/16]; // 8-bit block scales
uint8_t qh[QK_K/8]; // quants, high bit
uint8_t qs[QK_K/2]; // quants, low 4 bits
} block_q5_K;
#else
typedef struct {
half d; // super-block scale for quantized scales
half dmin; // super-block scale for quantized mins
uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits
uint8_t qh[QK_K/8]; // quants, high bit
uint8_t qs[QK_K/2]; // quants, low 4 bits
} block_q5_K;
// 176 bytes / block
#endif
typedef struct {
uint8_t ql[QK_K/2]; // quants, lower 4 bits
uint8_t qh[QK_K/4]; // quants, upper 2 bits
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
half d; // super-block scale
} block_q6_K;
// 210 bytes / block
static inline uchar4 get_scale_min_k4(int j, device const uint8_t * q) {
uchar4 r;
if (j < 4) {
r[0] = q[j+0] & 63;
r[2] = q[j+1] & 63;
r[1] = q[j+4] & 63;
r[3] = q[j+5] & 63;
} else {
r[0] = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
r[2] = (q[j+5] & 0xF) | ((q[j-3] >> 6) << 4);
r[1] = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
r[3] = (q[j+5] >> 4) | ((q[j+1] >> 6) << 4);
}
return r;
}
//========================================== dequantization =============================
static void dequantize_row_q2_K(device const block_q2_K * x, device float * y, int k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
for (int i = 0; i < nb; i++) {
const float d = x[i].d;
const float min = x[i].dmin;
device const uint8_t * q = x[i].qs;
#if QK_K == 256
int is = 0;
float dl, ml;
for (int n = 0; n < QK_K; n += 128) {
int shift = 0;
for (int j = 0; j < 4; ++j) {
uint8_t sc = x[i].scales[is++];
dl = d * (sc & 0xF); ml = min * (sc >> 4);
for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
sc = x[i].scales[is++];
dl = d * (sc & 0xF); ml = min * (sc >> 4);
for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
shift += 2;
}
q += 32;
}
#else
float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4);
float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4);
float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4);
float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4);
for (int l = 0; l < 16; ++l) {
y[l+ 0] = dl1 * ((q[l] >> 0) & 3) - ml1;
y[l+16] = dl2 * ((q[l] >> 2) & 3) - ml2;
y[l+32] = dl3 * ((q[l] >> 4) & 3) - ml3;
y[l+48] = dl4 * ((q[l] >> 6) & 3) - ml4;
}
y += QK_K;
#endif
}
}
static void dequantize_row_q3_K(device const block_q3_K * x, device float * y, int k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
#if QK_K == 256
const uint16_t kmask1 = 0x0303;
const uint16_t kmask2 = 0x0f0f;
uint16_t aux[8];
thread const int8_t * scales = (thread const int8_t*)aux;
for (int i = 0; i < nb; i++) {
const float d_all = (float)(x[i].d);
device const uint8_t * q = x[i].qs;
device const uint8_t * h = x[i].hmask;
uint8_t m = 1;
device const uint16_t * a = (device const uint16_t *)x[i].scales;
aux[0] = (a[0] & kmask2) | (((a[4] >> 0) & kmask1) << 4);
aux[1] = (a[1] & kmask2) | (((a[5] >> 0) & kmask1) << 4);
aux[2] = (a[2] & kmask2) | (((a[4] >> 2) & kmask1) << 4);
aux[3] = (a[3] & kmask2) | (((a[5] >> 2) & kmask1) << 4);
aux[4] = ((a[0] >> 4) & kmask2) | (((a[4] >> 4) & kmask1) << 4);
aux[5] = ((a[1] >> 4) & kmask2) | (((a[5] >> 4) & kmask1) << 4);
aux[6] = ((a[2] >> 4) & kmask2) | (((a[4] >> 6) & kmask1) << 4);
aux[7] = ((a[3] >> 4) & kmask2) | (((a[5] >> 6) & kmask1) << 4);
int is = 0;
float dl;
for (int n = 0; n < QK_K; n += 128) {
int shift = 0;
for (int j = 0; j < 4; ++j) {
dl = d_all * (scales[is++] - 32);
for (int l = 0; l < 16; ++l) {
*y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((h[l+ 0] & m) ? 0 : 4));
}
dl = d_all * (scales[is++] - 32);
for (int l = 0; l < 16; ++l) {
*y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((h[l+16] & m) ? 0 : 4));
}
shift += 2;
m <<= 1;
}
q += 32;
}
}
#else
for (int i = 0; i < nb; i++) {
const float d_all = (float)(x[i].d);
device const uint8_t * q = x[i].qs;
device const uint8_t * hm = x[i].hmask;
const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
const float d2 = d_all * ((x[i].scales[0] >> 4) - 8);
const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
const float d4 = d_all * ((x[i].scales[1] >> 4) - 8);
for (int l = 0; l < 8; ++l) {
uint8_t h = hm[l];
y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4));
y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4));
y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4));
y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4));
y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4));
y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4));
y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4));
y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4));
}
y += QK_K;
}
#endif
}
static void dequantize_row_q4_K(device const block_q4_K * x, device float * y, int k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
for (int i = 0; i < nb; i++) {
device const uint8_t * q = x[i].qs;
#if QK_K == 256
const float d = x[i].d;
const float min = x[i].dmin;
device const uint8_t * scales = x[i].scales;
int is = 0;
for (int j = 0; j < QK_K; j += 64) {
const uchar4 sc = get_scale_min_k4(is, scales);
const float d1 = d * sc[0]; const float m1 = min * sc[1];
const float d2 = d * sc[2]; const float m2 = min * sc[3];
for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
q += 32; is += 2;
}
#else
device const uint8_t * s = x[i].scales;
device const half2 * dh = (device const half2 *)x[i].d;
const float2 d = (float2)dh[0];
const float d1 = d[0] * (s[0] & 0xF);
const float d2 = d[0] * (s[1] & 0xF);
const float m1 = d[1] * (s[0] >> 4);
const float m2 = d[1] * (s[1] >> 4);
for (int l = 0; l < 32; ++l) {
y[l+ 0] = d1 * (q[l] & 0xF) - m1;
y[l+32] = d2 * (q[l] >> 4) - m2;
}
y += QK_K;
#endif
}
}
static void dequantize_row_q5_K(device const block_q5_K * x, device float * y, int k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
#if QK_K == 256
for (int i = 0; i < nb; i++) {
const float d = (float)(x[i].d);
const float min = (float)(x[i].dmin);
device const uint8_t * ql = x[i].qs;
device const uint8_t * qh = x[i].qh;
int is = 0;
uint8_t u1 = 1, u2 = 2;
for (int j = 0; j < QK_K; j += 64) {
const uchar4 sc = get_scale_min_k4(is, x[i].scales);
const float d1 = d * sc[0]; const float m1 = min * sc[1];
const float d2 = d * sc[2]; const float m2 = min * sc[3];
for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
ql += 32; is += 2;
u1 <<= 2; u2 <<= 2;
}
}
#else
for (int i = 0; i < nb; i++) {
const float d = (float)x[i].d;
device const uint8_t * ql = x[i].qs;
device const uint8_t * qh = x[i].qh;
device const int8_t * sc = x[i].scales;
for (int l = 0; l < 8; ++l) {
y[l+ 0] = d * sc[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16));
y[l+ 8] = d * sc[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16));
y[l+16] = d * sc[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16));
y[l+24] = d * sc[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16));
y[l+32] = d * sc[2] * ((ql[l+ 0] >> 4) - (qh[l] & 0x10 ? 0 : 16));
y[l+40] = d * sc[2] * ((ql[l+ 8] >> 4) - (qh[l] & 0x20 ? 0 : 16));
y[l+48] = d * sc[3] * ((ql[l+16] >> 4) - (qh[l] & 0x40 ? 0 : 16));
y[l+56] = d * sc[3] * ((ql[l+24] >> 4) - (qh[l] & 0x80 ? 0 : 16));
}
y += QK_K;
}
#endif
}
static void dequantize_row_q6_K(device const block_q6_K * x, device float * y, int k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
for (int i = 0; i < nb; i++) {
device const uint8_t * ql = x[i].ql;
device const uint8_t * qh = x[i].qh;
device const int8_t * sc = x[i].scales;
const float d = x[i].d;
#if QK_K == 256
for (int n = 0; n < QK_K; n += 128) {
for (int l = 0; l < 32; ++l) {
int is = l/16;
const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
y[l + 0] = d * sc[is + 0] * q1;
y[l + 32] = d * sc[is + 2] * q2;
y[l + 64] = d * sc[is + 4] * q3;
y[l + 96] = d * sc[is + 6] * q4;
}
y += 128;
ql += 64;
qh += 32;
sc += 8;
}
#else
for (int l = 0; l < 16; ++l) {
const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
const int8_t q3 = (int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
const int8_t q4 = (int8_t)((ql[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
y[l+ 0] = d * sc[0] * q1;
y[l+16] = d * sc[1] * q2;
y[l+32] = d * sc[2] * q3;
y[l+48] = d * sc[3] * q4;
}
y += 64;
#endif
}
}
kernel void kernel_get_rows_q2_K(
device const void * src0,
device const int * src1,
device float * dst,
constant int64_t & ne00,
constant uint64_t & nb01,
constant uint64_t & nb1,
uint tpig[[thread_position_in_grid]]) {
const int i = tpig;
const int r = ((device int32_t *) src1)[i];
dequantize_row_q2_K(
(device const block_q2_K *) ((device char *) src0 + r*nb01),
(device float *) ((device char *) dst + i*nb1), ne00);
}
kernel void kernel_get_rows_q3_K(
device const void * src0,
device const int * src1,
device float * dst,
constant int64_t & ne00,
constant uint64_t & nb01,
constant uint64_t & nb1,
uint tpig[[thread_position_in_grid]]) {
const int i = tpig;
const int r = ((device int32_t *) src1)[i];
dequantize_row_q3_K(
(device const block_q3_K *) ((device char *) src0 + r*nb01),
(device float *) ((device char *) dst + i*nb1), ne00);
}
kernel void kernel_get_rows_q4_K(
device const void * src0,
device const int * src1,
device float * dst,
constant int64_t & ne00,
constant uint64_t & nb01,
constant uint64_t & nb1,
uint tpig[[thread_position_in_grid]]) {
const int i = tpig;
const int r = ((device int32_t *) src1)[i];
dequantize_row_q4_K(
(device const block_q4_K *) ((device char *) src0 + r*nb01),
(device float *) ((device char *) dst + i*nb1), ne00);
}
kernel void kernel_get_rows_q5_K(
device const void * src0,
device const int * src1,
device float * dst,
constant int64_t & ne00,
constant uint64_t & nb01,
constant uint64_t & nb1,
uint tpig[[thread_position_in_grid]]) {
const int i = tpig;
const int r = ((device int32_t *) src1)[i];
dequantize_row_q5_K(
(device const block_q5_K *) ((device char *) src0 + r*nb01),
(device float *) ((device char *) dst + i*nb1), ne00);
}
kernel void kernel_get_rows_q6_K(
device const void * src0,
device const int * src1,
device float * dst,
constant int64_t & ne00,
constant uint64_t & nb01,
constant uint64_t & nb1,
uint tpig[[thread_position_in_grid]]) {
const int i = tpig;
const int r = ((device int32_t *) src1)[i];
dequantize_row_q6_K(
(device const block_q6_K *) ((device char *) src0 + r*nb01),
(device float *) ((device char *) dst + i*nb1), ne00);
}
//====================================== dot products =========================
kernel void kernel_mul_mat_q2_K_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne10,
constant int64_t & ne0,
threadgroup float * sum [[threadgroup(0)]],
uint2 tgpig[[threadgroup_position_in_grid]],
uint2 tpitg[[thread_position_in_threadgroup]],
uint2 tptg[[threads_per_threadgroup]]) {
const int nb = ne00/QK_K;
const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
device const block_q2_K * x = (device const block_q2_K *) src0 + r0*nb;
device const float * yy = (device const float *) src1 + r1*ne10;
const int nth = tptg.x*tptg.y;
const int ith = tptg.y*tpitg.x + tpitg.y;
float sumf = 0;
#if QK_K == 256
const int tid = tpitg.y; // 0...16
const int il = tid/4; // 0...3
const int ir = tid%4; // 0...3
const int ip = il/2; // 0 or 1
const int shift1 = 4*(il%2);// 0 or 4
const int shift2 = shift1+2;// 2 or 6
const int n = 8;
const int is = 4*il + (n*ir)/16;
const int y_offset = 64*il + n*ir;
const int q_offset = 32*ip + n*ir;
for (int i = tpitg.x; i < nb; i += tptg.x) {
device const uint8_t * q = x[i].qs + q_offset;
device const uint8_t * scales = x[i].scales + is;
uint8_t d1 = scales[0] & 0xF;
uint8_t d2 = scales[2] & 0xF;
uint8_t m1 = scales[0] >> 4;
uint8_t m2 = scales[2] >> 4;
device const float * y = yy + i*QK_K + y_offset;
float2 s = {0.f, 0.f};
float smin = 0;
for (int l = 0; l < n; ++l) {
s[0] += y[l+ 0] * ((q[l] >> shift1) & 3);
s[1] += y[l+32] * ((q[l] >> shift2) & 3);
smin += y[l+ 0] * m1 + y[l+32] * m2;
}
const float dall = (float)x[i].d;
const float dmin = (float)x[i].dmin;
sumf += dall * (s[0] * d1 + s[1] * d2) - dmin * smin;
}
#else
const int il = 4 * tpitg.x;
uint32_t aux[2];
thread const uint8_t * d = (thread const uint8_t *)aux;
thread const uint8_t * m = (thread const uint8_t *)aux + 4;
for (int i = tpitg.y; i < nb; i += tptg.y) {
device const uint8_t * q = x[i].qs + il;
device const float * y = yy + i*QK_K + il;
const float dall = (float)x[i].d;
const float dmin = (float)x[i].dmin;
device const uint32_t * a = (device const uint32_t *)x[i].scales;
aux[0] = a[0] & 0x0f0f0f0f;
aux[1] = (a[0] >> 4) & 0x0f0f0f0f;
for (int l = 0; l < 4; ++l) {
sumf += y[l+ 0] * (dall * d[0] * ((q[l] >> 0) & 3) - dmin * m[0])
+ y[l+16] * (dall * d[1] * ((q[l] >> 2) & 3) - dmin * m[1])
+ y[l+32] * (dall * d[2] * ((q[l] >> 4) & 3) - dmin * m[2])
+ y[l+48] * (dall * d[3] * ((q[l] >> 6) & 3) - dmin * m[3]);
}
}
#endif
sum[ith] = sumf;
//
// Accumulate the sum from all threads in the threadgroup
//
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%4 == 0) {
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%16 == 0) {
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith == 0) {
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
dst[r1*ne0 + r0] = sum[0];
}
}
kernel void kernel_mul_mat_q3_K_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne10,
constant int64_t & ne0,
constant int64_t & ne1,
threadgroup float * sum [[threadgroup(0)]],
uint2 tgpig[[threadgroup_position_in_grid]],
uint2 tpitg[[thread_position_in_threadgroup]],
uint2 tptg[[threads_per_threadgroup]]) {
const int nb = ne00/QK_K;
const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
device const block_q3_K * x = (device const block_q3_K *) src0 + r0*nb;
device const float * yy = (device const float *) src1 + r1*ne10;
const int nth = tptg.x*tptg.y;
const int ith = tptg.y*tpitg.x + tpitg.y;
#if QK_K == 256
const uint8_t m3 = 3;
const int8_t m4 = 4;
const uint16_t kmask1 = 0x0303;
const uint16_t kmask2 = 0x0f0f;
const int tid = tpitg.y; // expecting 16
const int ip = tid/8; // 0 or 1
const int il = tid/2 - 4*ip; // 0...3
const int ir = tid%2;
const int n = 8;
const int l0 = n*ir;
const uint8_t m = 1 << (4*ip + il);
const int shift = 2*il;
const uint16_t s_shift1 = 4*ip;
const uint16_t s_shift2 = s_shift1 + 2*(il/2);
const int ik = 4 + (il%2);
const int q_offset = 32*ip + l0;
const int y_offset = 128*ip + 32*il + l0;
//float sumf = 0;
float sumf1 = 0, sumf2 = 0;
for (int i = tpitg.x; i < nb; i += tptg.x) {
const float d_all = (float)(x[i].d);
device const uint8_t * q = x[i].qs + q_offset;
device const uint8_t * h = x[i].hmask + l0;
device const float * y = yy + i * QK_K + y_offset;
device const uint16_t * a = (device const uint16_t *)x[i].scales;
const char2 scales = as_type<char2>((uint16_t)(((a[il] >> s_shift1) & kmask2) | (((a[ik] >> s_shift2) & kmask1) << 4)));
float s = 0;
for (int l = 0; l < n; ++l) {
s += y[l+ 0] * ((int8_t)((q[l+ 0] >> shift) & m3) - ((h[l+ 0] & m) ? 0 : m4));
}
float d = d_all * s;
sumf1 += d * scales[0];
sumf2 += d;
//sumf += d_all * s * (scales[0] - 32);
s = 0;
for (int l = 0; l < n; ++l) {
s += y[l+16] * ((int8_t)((q[l+16] >> shift) & m3) - ((h[l+16] & m) ? 0 : m4));
}
d = d_all * s;
sumf1 += d * scales[1];
sumf2 += d;
//sumf += d_all * s * (scales[1] - 32);
}
//sum[ith] = sumf;
sum[ith] = sumf1 - 32.f*sumf2;
#else
const int il = 4 * tpitg.x; // 0, 4, 8, 12
const int im = il/8; // 0, 0, 1, 1
const int in = il%8; // 0, 4, 0, 4
float sumf = 0;
for (int i = tpitg.y; i < nb; i += tptg.y) {
const float d_all = (float)(x[i].d);
device const uint8_t * q = x[i].qs + il;
device const uint8_t * h = x[i].hmask + in;
device const float * y = yy + i * QK_K + il;
const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
const float d2 = d_all * ((x[i].scales[0] >> 4) - 8);
const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
const float d4 = d_all * ((x[i].scales[1] >> 4) - 8);
for (int l = 0; l < 4; ++l) {
const uint8_t hm = h[l] >> im;
sumf += y[l+ 0] * d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((hm & 0x01) ? 0 : 4))
+ y[l+16] * d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((hm & 0x04) ? 0 : 4))
+ y[l+32] * d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((hm & 0x10) ? 0 : 4))
+ y[l+48] * d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((hm & 0x40) ? 0 : 4));
}
}
sum[ith] = sumf;
#endif
//
// Accumulate the sum from all threads in the threadgroup
//
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%4 == 0) {
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%16 == 0) {
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith == 0) {
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
dst[r1*ne0 + r0] = sum[0];
}
}
#if QK_K == 256
kernel void kernel_mul_mat_q4_K_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne10,
constant int64_t & ne0,
constant int64_t & ne01[[buffer(4)]],
uint2 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
const uint16_t kmask1 = 0x3f3f;
const uint16_t kmask2 = 0x0f0f;
const uint16_t kmask3 = 0xc0c0;
const int ix = tiisg/8; // 0...3
const int it = tiisg%8; // 0...7
const int im = it/4; // 0 or 1
const int ir = it%4; // 0...3
const int nb = ne00/QK_K;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
const int ib_row = first_row * nb;
device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row;
device const float * y = (device const float *) src1 + r1*ne10;
float yl[16];
float yh[16];
float sumf[N_DST]={0.f}, all_sum;
const int step = sizeof(block_q4_K) * nb / 2;
device const float * y4 = y + ix * QK_K + 64 * im + 8 * ir;
uint16_t sc16[4];
thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
for (int ib = ix; ib < nb; ib += 4) {
float4 sumy = {0.f, 0.f, 0.f, 0.f};
for (int i = 0; i < 8; ++i) {
yl[i+0] = y4[i+ 0]; sumy[0] += yl[i+0];
yl[i+8] = y4[i+ 32]; sumy[1] += yl[i+8];
yh[i+0] = y4[i+128]; sumy[2] += yh[i+0];
yh[i+8] = y4[i+160]; sumy[3] += yh[i+8];
}
device const uint16_t * sc = (device const uint16_t *)x[ib].scales + im;
device const uint16_t * q1 = (device const uint16_t *)x[ib].qs + 16 * im + 4 * ir;
device const half * dh = &x[ib].d;
for (int row = 0; row < N_DST; row++) {
sc16[0] = sc[0] & kmask1;
sc16[1] = sc[2] & kmask1;
sc16[2] = ((sc[4] >> 0) & kmask2) | ((sc[0] & kmask3) >> 2);
sc16[3] = ((sc[4] >> 4) & kmask2) | ((sc[2] & kmask3) >> 2);
device const uint16_t * q2 = q1 + 32;
float4 acc1 = {0.f, 0.f, 0.f, 0.f};
float4 acc2 = {0.f, 0.f, 0.f, 0.f};
for (int i = 0; i < 8; i += 2) {
acc1[0] += yl[i+0] * (q1[i/2] & 0x000F);
acc1[1] += yl[i+1] * (q1[i/2] & 0x0F00);
acc1[2] += yl[i+8] * (q1[i/2] & 0x00F0);
acc1[3] += yl[i+9] * (q1[i/2] & 0xF000);
acc2[0] += yh[i+0] * (q2[i/2] & 0x000F);
acc2[1] += yh[i+1] * (q2[i/2] & 0x0F00);
acc2[2] += yh[i+8] * (q2[i/2] & 0x00F0);
acc2[3] += yh[i+9] * (q2[i/2] & 0xF000);
}
float dall = dh[0];
float dmin = dh[1];
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc8[0] +
(acc1[2] + 1.f/256.f * acc1[3]) * sc8[1] * 1.f/16.f +
(acc2[0] + 1.f/256.f * acc2[1]) * sc8[4] +
(acc2[2] + 1.f/256.f * acc2[3]) * sc8[5] * 1.f/16.f) -
dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
q1 += step;
sc += step;
dh += step;
}
y4 += 4 * QK_K;
}
for (int row = 0; row < N_DST; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst[r1*ne0 + first_row + row] = all_sum;
}
}
}
#else
kernel void kernel_mul_mat_q4_K_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne10,
constant int64_t & ne0,
constant int64_t & ne01[[buffer(4)]],
uint2 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
const int ix = tiisg/4; // 0...7
const int it = tiisg%4; // 0...3
const int nb = ne00/QK_K;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
const int ib_row = first_row * nb;
device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row;
device const float * y = (device const float *) src1 + r1*ne10;
float yl[8];
float yh[8];
float sumf[N_DST]={0.f}, all_sum;
const int step = sizeof(block_q4_K) * nb / 2;
device const float * y4 = y + ix * QK_K + 8 * it;
uint16_t sc16[4];
for (int ib = ix; ib < nb; ib += 8) {
float2 sumy = {0.f, 0.f};
for (int i = 0; i < 8; ++i) {
yl[i] = y4[i+ 0]; sumy[0] += yl[i];
yh[i] = y4[i+32]; sumy[1] += yh[i];
}
device const uint16_t * sc = (device const uint16_t *)x[ib].scales;
device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
device const half * dh = x[ib].d;
for (int row = 0; row < N_DST; row++) {
sc16[0] = sc[0] & 0x000f;
sc16[1] = sc[0] & 0x0f00;
sc16[2] = sc[0] & 0x00f0;
sc16[3] = sc[0] & 0xf000;
float2 acc1 = {0.f, 0.f};
float2 acc2 = {0.f, 0.f};
for (int i = 0; i < 8; i += 2) {
acc1[0] += yl[i+0] * (qs[i/2] & 0x000F);
acc1[1] += yl[i+1] * (qs[i/2] & 0x0F00);
acc2[0] += yh[i+0] * (qs[i/2] & 0x00F0);
acc2[1] += yh[i+1] * (qs[i/2] & 0xF000);
}
float dall = dh[0];
float dmin = dh[1];
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc16[0] +
(acc2[0] + 1.f/256.f * acc2[1]) * sc16[1] * 1.f/4096.f) -
dmin * 1.f/16.f * (sumy[0] * sc16[2] + sumy[1] * sc16[3] * 1.f/256.f);
qs += step;
sc += step;
dh += step;
}
y4 += 8 * QK_K;
}
for (int row = 0; row < N_DST; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst[r1*ne0 + first_row + row] = all_sum;
}
}
}
#endif
kernel void kernel_mul_mat_q5_K_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne10,
constant int64_t & ne0,
threadgroup float * sum [[threadgroup(0)]],
uint2 tgpig[[threadgroup_position_in_grid]],
uint2 tpitg[[thread_position_in_threadgroup]],
uint2 tptg[[threads_per_threadgroup]]) {
const int nb = ne00/QK_K;
const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
device const block_q5_K * x = (device const block_q5_K *) src0 + r0*nb;
device const float * yy = (device const float *) src1 + r1*ne10;
const int nth = tptg.x*tptg.y;
const int ith = tptg.y*tpitg.x + tpitg.y;
float sumf = 0;
#if QK_K == 256
const uint16_t kmask1 = 0x3f3f;
const uint16_t kmask2 = 0x0f0f;
const uint16_t kmask3 = 0xc0c0;
const int tid = tpitg.y; // 0...16
const int il = tid/4; // 0...3
const int ir = tid - 4*il;// 0...3
const int n = 4;
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
const int in = il%2;
const int l0 = n*(2*ir + in);
const int q_offset = 32*im + l0;
const int y_offset = 64*im + l0;
const uint8_t hm1 = 1u << (2*im);
const uint8_t hm2 = hm1 << 1;
const uint8_t hm3 = hm1 << 4;
const uint8_t hm4 = hm2 << 4;
uchar2 sc1, sc2, sc3, sc4;
for (int i = tpitg.x; i < nb; i += tptg.x) {
device const uint8_t * q1 = (x + i)->qs + q_offset;
device const uint8_t * q2 = q1 + 64;
device const uint8_t * qh = (x + i)->qh + l0;
device const float * y1 = yy + i*QK_K + y_offset;
device const float * y2 = y1 + 128;
const float dall = (float)((x + i)->d);
const float dmin = (float)((x + i)->dmin);
device const uint16_t * a = (device const uint16_t *)(x + i)->scales;
sc1 = as_type<uchar2>((uint16_t)(a[im+0] & kmask1));
sc2 = as_type<uchar2>((uint16_t)(a[im+2] & kmask1));
sc3 = as_type<uchar2>((uint16_t)(((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2)));
sc4 = as_type<uchar2>((uint16_t)(((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2)));
float4 s = {0.f, 0.f, 0.f, 0.f};
float smin = 0;
for (int l = 0; l < n; ++l) {
s[0] += y1[l+ 0] * ((q1[l] & 0xF) + (qh[l] & hm1 ? 16 : 0));
s[1] += y1[l+32] * ((q1[l] >> 4) + (qh[l] & hm2 ? 16 : 0));
s[2] += y2[l+ 0] * ((q2[l] & 0xF) + (qh[l] & hm3 ? 16 : 0));
s[3] += y2[l+32] * ((q2[l] >> 4) + (qh[l] & hm4 ? 16 : 0));
smin += y1[l] * sc2[0] + y1[l+32] * sc2[1] + y2[l] * sc4[0] + y2[l+32] * sc4[1];
}
sumf += dall * (s[0] * sc1[0] + s[1] * sc1[1] + s[2] * sc3[0] + s[3] * sc3[1]) - dmin * smin;
}
#else
const int il = 4 * tpitg.x; // 0, 4, 8, 12
const int im = il/8; // 0, 0, 1, 1
const int in = il%8; // 0, 4, 0, 4
for (int i = tpitg.y; i < nb; i += tptg.y) {
const float d = (float)x[i].d;
device const uint8_t * q = x[i].qs + il;
device const uint8_t * h = x[i].qh + in;
device const int8_t * s = x[i].scales;
device const float * y = yy + i*QK_K + il;
for (int l = 0; l < 4; ++l) {
const uint8_t hl = h[l] >> im;
sumf += y[l+ 0] * d * s[0] * ((q[l+ 0] & 0xF) - (hl & 0x01 ? 0 : 16))
+ y[l+16] * d * s[1] * ((q[l+16] & 0xF) - (hl & 0x04 ? 0 : 16))
+ y[l+32] * d * s[2] * ((q[l+ 0] >> 4) - (hl & 0x10 ? 0 : 16))
+ y[l+48] * d * s[3] * ((q[l+16] >> 4) - (hl & 0x40 ? 0 : 16));
}
}
#endif
sum[ith] = sumf;
//
// Accumulate the sum from all threads in the threadgroup
//
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%4 == 0) {
sum[ith] += sum[ith+1] + sum[ith+2] + sum[ith+3];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%16 == 0) {
sum[ith] += sum[ith+4] + sum[ith+8] + sum[ith+12];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith == 0) {
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
dst[r1*ne0 + r0] = sum[0];
}
}
kernel void kernel_mul_mat_q6_K_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne10,
constant int64_t & ne0,
threadgroup float * sum [[threadgroup(0)]],
uint2 tgpig[[threadgroup_position_in_grid]],
uint2 tpitg[[thread_position_in_threadgroup]],
uint2 tptg[[threads_per_threadgroup]]) {
const uint8_t kmask1 = 0x03;
const uint8_t kmask2 = 0x0C;
const uint8_t kmask3 = 0x30;
const uint8_t kmask4 = 0xC0;
const int nb = ne00/QK_K;
const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
device const block_q6_K * x = (device const block_q6_K *) src0 + r0*nb;
device const float * yy = (device const float *) src1 + r1*ne10;
const int nth = tptg.x*tptg.y;
const int ith = tptg.y*tpitg.x + tpitg.y;
float sumf = 0;
#if QK_K == 256
// Note: we absolutely assume that tptg.y = 16 and QK_K = 256!
const int iqs = 16 * tpitg.y;
const int ip = iqs / 128; // 0 or 1
const int il = (iqs - 128*ip)/16; // 0...7
const int n = 4;
const int l0 = n*il;
const int is = 8*ip + l0/16;
const int y_offset = 128*ip + l0;
const int q_offset_l = 64*ip + l0;
const int q_offset_h = 32*ip + l0;
for (int i = tpitg.x; i < nb; i += tptg.x) {
device const uint8_t * ql = x[i].ql + q_offset_l;
device const uint8_t * qh = x[i].qh + q_offset_h;
device const int8_t * sc = x[i].scales + is;
device const float * y = yy + i * QK_K + y_offset;
const float dall = x[i].d;
float4 sums = {0.f, 0.f, 0.f, 0.f};
for (int l = 0; l < n; ++l) {
sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
sums[1] += y[l+32] * ((int8_t)((ql[l+32] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
sums[2] += y[l+64] * ((int8_t)((ql[l+ 0] >> 4) | ((qh[l] & kmask3) << 0)) - 32);
sums[3] += y[l+96] * ((int8_t)((ql[l+32] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
}
sumf += dall * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]);
}
#else
const int il = 4*tpitg.x; // 0, 4, 8, 12
for (int i = tpitg.y; i < nb; i += tptg.y) {
device const float * y = yy + i * QK_K + il;
device const uint8_t * ql = x[i].ql + il;
device const uint8_t * qh = x[i].qh + il;
device const int8_t * s = x[i].scales;
const float d = x[i].d;
float4 sums = {0.f, 0.f, 0.f, 0.f};
for (int l = 0; l < 4; ++l) {
sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
sums[1] += y[l+16] * ((int8_t)((ql[l+16] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
sums[2] += y[l+32] * ((int8_t)((ql[l+ 0] >> 4) | ((qh[l] & kmask3) >> 0)) - 32);
sums[3] += y[l+48] * ((int8_t)((ql[l+16] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
}
sumf += d * (sums[0] * s[0] + sums[1] * s[1] + sums[2] * s[2] + sums[3] * s[3]);
}
#endif
sum[ith] = sumf;
//
// Accumulate the sum from all threads in the threadgroup
//
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%4 == 0) {
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%16 == 0) {
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith == 0) {
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
dst[r1*ne0 + r0] = sum[0];
}
}