llama.cpp/tests/test-quantize-fns.cpp
Stephan Walter 1b107b8550
ggml : generalize quantize_fns for simpler FP16 handling (#1237)
* Generalize quantize_fns for simpler FP16 handling

* Remove call to ggml_cuda_mul_mat_get_wsize

* ci : disable FMA for mac os actions

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-05 19:13:06 +03:00

164 lines
5.5 KiB
C++

// Unit tests for quantization specific functions - quantize, dequantize and dot product
#include "ggml.h"
#undef NDEBUG
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <string>
#include <vector>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
const float MAX_QUANTIZATION_REFERENCE_ERROR = 0.0001f;
const float MAX_QUANTIZATION_TOTAL_ERROR = 0.002f;
const float MAX_QUANTIZATION_TOTAL_ERROR_2BITS = 0.0075f;
const float MAX_QUANTIZATION_TOTAL_ERROR_3BITS = 0.0040f;
const float MAX_DOT_PRODUCT_ERROR = 0.02f;
const char* RESULT_STR[] = {"ok", "FAILED"};
// Generate synthetic data
void generate_data(float offset, size_t n, float * dst) {
for (size_t i = 0; i < n; i++) {
dst[i] = 0.1 + 2*cosf(i + offset);
}
}
// Calculate RMSE between two float arrays
float array_rmse(const float * a1, const float * a2, size_t n) {
double sum = 0;
for (size_t i = 0; i < n; i++) {
double diff = a1[i] - a2[i];
sum += diff * diff;
}
return sqrtf(sum) / n;
}
// Total quantization error on test data
float total_quantization_error(ggml_type_traits_t & qfns, size_t test_size, const float * test_data) {
std::vector<uint8_t> tmp_q(2*test_size);
std::vector<float> tmp_out(test_size);
qfns.from_float(test_data, tmp_q.data(), test_size);
qfns.to_float(tmp_q.data(), tmp_out.data(), test_size);
return array_rmse(test_data, tmp_out.data(), test_size);
}
// Total quantization error on test data
float reference_quantization_error(ggml_type_traits_t & qfns, size_t test_size, const float * test_data) {
std::vector<uint8_t> tmp_q(2*test_size);
std::vector<float> tmp_out(test_size);
std::vector<float> tmp_out_ref(test_size);
qfns.from_float(test_data, tmp_q.data(), test_size);
qfns.to_float(tmp_q.data(), tmp_out.data(), test_size);
qfns.from_float_reference(test_data, tmp_q.data(), test_size);
qfns.to_float(tmp_q.data(), tmp_out_ref.data(), test_size);
return array_rmse(tmp_out.data(), tmp_out_ref.data(), test_size);
}
float dot_product(const float * a1, const float * a2, size_t test_size) {
double sum = 0;
for (size_t i = 0; i < test_size; i++) {
sum += a1[i] * a2[i];
}
return sum;
}
// Total dot product error
float dot_product_error(ggml_type_traits_t & qfns, size_t test_size, const float * test_data1, const float *test_data2) {
std::vector<uint8_t> tmp_q1(2*test_size);
std::vector<uint8_t> tmp_q2(2*test_size);
auto vdot = ggml_internal_get_type_traits(qfns.vec_dot_type);
qfns.from_float(test_data1, tmp_q1.data(), test_size);
vdot.from_float(test_data2, tmp_q2.data(), test_size);
float result = INFINITY;
qfns.vec_dot(test_size, &result, tmp_q1.data(), tmp_q2.data());
const float dot_ref = dot_product(test_data1, test_data2, test_size);
return fabsf(result - dot_ref) / test_size;
}
int main(int argc, char * argv[]) {
bool verbose = false;
const size_t test_size = 32 * 128;
std::string arg;
for (int i = 1; i < argc; i++) {
arg = argv[i];
if (arg == "-v") {
verbose = true;
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
return 1;
}
}
std::vector<float> test_data(test_size);
std::vector<float> test_data2(test_size);
generate_data(0.0, test_data.size(), test_data.data());
generate_data(1.0, test_data2.size(), test_data2.data());
// Initialize GGML, ensures float conversion tables are initialized
struct ggml_init_params ggml_params = {
/* .mem_size = */ 1*1024,
/* .mem_buffer = */ NULL,
/* .no_alloc = */ true,
};
struct ggml_context * ctx = ggml_init(ggml_params);
int num_failed = 0;
bool failed = false;
for (int i = 0; i < GGML_TYPE_COUNT; i++) {
ggml_type type = (ggml_type) i;
ggml_type_traits_t qfns = ggml_internal_get_type_traits(type);
if (qfns.from_float && qfns.to_float) {
const float total_error = total_quantization_error(qfns, test_size, test_data.data());
const float max_quantization_error =
type == GGML_TYPE_Q2_K ? MAX_QUANTIZATION_TOTAL_ERROR_2BITS :
type == GGML_TYPE_Q3_K ? MAX_QUANTIZATION_TOTAL_ERROR_3BITS : MAX_QUANTIZATION_TOTAL_ERROR;
failed = !(total_error < max_quantization_error);
num_failed += failed;
if (failed || verbose) {
printf("%5s absolute quantization error: %s (%f)\n", ggml_type_name(type), RESULT_STR[failed], total_error);
}
const float reference_error = reference_quantization_error(qfns, test_size, test_data.data());
failed = !(reference_error < MAX_QUANTIZATION_REFERENCE_ERROR);
num_failed += failed;
if (failed || verbose) {
printf("%5s reference implementation error: %s (%f)\n", ggml_type_name(type), RESULT_STR[failed], reference_error);
}
const float vec_dot_error = dot_product_error(qfns, test_size, test_data.data(), test_data2.data());
failed = !(vec_dot_error < MAX_DOT_PRODUCT_ERROR);
num_failed += failed;
if (failed || verbose) {
printf("%5s dot product error: %s (%f)\n", ggml_type_name(type), RESULT_STR[failed], vec_dot_error);
}
}
}
if (num_failed || verbose) {
printf("%d tests failed\n", num_failed);
}
ggml_free(ctx);
return num_failed > 0;
}