mirror of
https://git.adityakumar.xyz/llama.cpp.git
synced 2024-11-08 15:09:44 +00:00
5bf2a27718
* Add ggml changes * Update train-text-from-scratch for change * mpi : adapt to new ggml_tensor->src --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
216 lines
6.8 KiB
C
216 lines
6.8 KiB
C
#include "ggml-mpi.h"
|
|
|
|
#include "ggml.h"
|
|
|
|
#include <mpi.h>
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
|
|
|
#define UNUSED GGML_UNUSED
|
|
|
|
struct ggml_mpi_context {
|
|
int rank;
|
|
int size;
|
|
};
|
|
|
|
void ggml_mpi_backend_init(void) {
|
|
MPI_Init(NULL, NULL);
|
|
}
|
|
|
|
void ggml_mpi_backend_free(void) {
|
|
MPI_Finalize();
|
|
}
|
|
|
|
struct ggml_mpi_context * ggml_mpi_init(void) {
|
|
struct ggml_mpi_context * ctx = calloc(1, sizeof(struct ggml_mpi_context));
|
|
|
|
MPI_Comm_rank(MPI_COMM_WORLD, &ctx->rank);
|
|
MPI_Comm_size(MPI_COMM_WORLD, &ctx->size);
|
|
|
|
return ctx;
|
|
}
|
|
|
|
void ggml_mpi_free(struct ggml_mpi_context * ctx) {
|
|
free(ctx);
|
|
}
|
|
|
|
int ggml_mpi_rank(struct ggml_mpi_context * ctx) {
|
|
return ctx->rank;
|
|
}
|
|
|
|
void ggml_mpi_eval_init(
|
|
struct ggml_mpi_context * ctx_mpi,
|
|
int * n_tokens,
|
|
int * n_past,
|
|
int * n_threads) {
|
|
UNUSED(ctx_mpi);
|
|
|
|
// synchronize the worker node parameters with the root node
|
|
MPI_Barrier(MPI_COMM_WORLD);
|
|
|
|
MPI_Bcast(n_tokens, 1, MPI_INT, 0, MPI_COMM_WORLD);
|
|
MPI_Bcast(n_past, 1, MPI_INT, 0, MPI_COMM_WORLD);
|
|
MPI_Bcast(n_threads, 1, MPI_INT, 0, MPI_COMM_WORLD);
|
|
}
|
|
|
|
static int ggml_graph_get_node_idx(struct ggml_cgraph * gf, const char * name) {
|
|
struct ggml_tensor * t = ggml_graph_get_tensor(gf, name);
|
|
if (t == NULL) {
|
|
fprintf(stderr, "%s: tensor %s not found\n", __func__, name);
|
|
return -1;
|
|
}
|
|
|
|
for (int i = 0; i < gf->n_nodes; i++) {
|
|
if (gf->nodes[i] == t) {
|
|
return i;
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "%s: tensor %s not found in graph (should not happen)\n", __func__, name);
|
|
return -1;
|
|
}
|
|
|
|
static void ggml_mpi_tensor_send(struct ggml_tensor * t, int mpi_rank_dst) {
|
|
MPI_Datatype mpi_type;
|
|
|
|
switch (t->type) {
|
|
case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break;
|
|
case GGML_TYPE_F32: mpi_type = MPI_FLOAT; break;
|
|
default: GGML_ASSERT(false && "not implemented");
|
|
}
|
|
|
|
const int retval = MPI_Send(t->data, ggml_nelements(t), mpi_type, mpi_rank_dst, 0, MPI_COMM_WORLD);
|
|
GGML_ASSERT(retval == MPI_SUCCESS);
|
|
}
|
|
|
|
static void ggml_mpi_tensor_recv(struct ggml_tensor * t, int mpi_rank_src) {
|
|
MPI_Datatype mpi_type;
|
|
|
|
switch (t->type) {
|
|
case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break;
|
|
case GGML_TYPE_F32: mpi_type = MPI_FLOAT; break;
|
|
default: GGML_ASSERT(false && "not implemented");
|
|
}
|
|
|
|
MPI_Status status; UNUSED(status);
|
|
|
|
const int retval = MPI_Recv(t->data, ggml_nelements(t), mpi_type, mpi_rank_src, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
|
GGML_ASSERT(retval == MPI_SUCCESS);
|
|
}
|
|
|
|
// TODO: there are many improvements that can be done to this implementation
|
|
void ggml_mpi_graph_compute_pre(
|
|
struct ggml_mpi_context * ctx_mpi,
|
|
struct ggml_cgraph * gf,
|
|
int n_layers) {
|
|
const int mpi_rank = ctx_mpi->rank;
|
|
const int mpi_size = ctx_mpi->size;
|
|
|
|
struct ggml_tensor * inp_tokens = ggml_graph_get_tensor(gf, "inp_tokens");
|
|
if (inp_tokens == NULL) {
|
|
fprintf(stderr, "%s: tensor 'inp_tokens' not found\n", __func__);
|
|
return;
|
|
}
|
|
|
|
struct ggml_tensor * inp0 = ggml_graph_get_tensor(gf, "layer_inp_0");
|
|
if (inp0 == NULL) {
|
|
fprintf(stderr, "%s: tensor 'inp0' not found\n", __func__);
|
|
return;
|
|
}
|
|
|
|
GGML_ASSERT(inp0 == gf->nodes[0]);
|
|
|
|
// distribute the compute graph into slices across the MPI nodes
|
|
//
|
|
// the main node (0) processes the last layers + the remainder of the compute graph
|
|
// and is responsible to pass the input tokens to the first node (1)
|
|
//
|
|
// node 1: [( 0) * n_per_node, ( 1) * n_per_node)
|
|
// node 2: [( 1) * n_per_node, ( 2) * n_per_node)
|
|
// ...
|
|
// node n-1: [(n-2) * n_per_node, (n-1) * n_per_node)
|
|
// node 0: [(n-1) * n_per_node, n_nodes)
|
|
//
|
|
if (mpi_rank > 0) {
|
|
if (mpi_rank == 1) {
|
|
// the first node (1) receives the input tokens from the main node (0)
|
|
ggml_mpi_tensor_recv(inp_tokens, 0);
|
|
} else {
|
|
// recv input data for each node into the "inp0" tensor (i.e. the first node in the compute graph)
|
|
ggml_mpi_tensor_recv(inp0, mpi_rank - 1);
|
|
}
|
|
} else if (mpi_size > 1) {
|
|
// node 0 sends the input tokens to node 1
|
|
ggml_mpi_tensor_send(inp_tokens, 1);
|
|
|
|
// recv the output data from the last node
|
|
ggml_mpi_tensor_recv(inp0, mpi_size - 1);
|
|
}
|
|
|
|
{
|
|
const int n_per_node = (n_layers + (mpi_size - 1)) / mpi_size;
|
|
|
|
const int mpi_idx = mpi_rank > 0 ? mpi_rank - 1 : mpi_size - 1;
|
|
|
|
const int il0 = (mpi_idx + 0) * n_per_node;
|
|
const int il1 = MIN(n_layers, (mpi_idx + 1) * n_per_node);
|
|
|
|
char name_l0[GGML_MAX_NAME];
|
|
char name_l1[GGML_MAX_NAME];
|
|
|
|
snprintf(name_l0, sizeof(name_l0), "layer_inp_%d", il0);
|
|
snprintf(name_l1, sizeof(name_l1), "layer_inp_%d", il1);
|
|
|
|
const int idx_l0 = ggml_graph_get_node_idx(gf, name_l0);
|
|
const int idx_l1 = mpi_rank > 0 ? ggml_graph_get_node_idx(gf, name_l1) + 1 : gf->n_nodes;
|
|
|
|
if (idx_l0 < 0 || idx_l1 < 0) {
|
|
fprintf(stderr, "%s: layer input nodes not found\n", __func__);
|
|
return;
|
|
}
|
|
|
|
// attach the input data to all nodes that need it
|
|
// TODO: not great - should be able to do this without modifying the compute graph (see next TODO below)
|
|
for (int i = idx_l0; i < idx_l1; i++) {
|
|
if (gf->nodes[i]->src[0] == gf->nodes[idx_l0]) {
|
|
gf->nodes[i]->src[0] = inp0;
|
|
}
|
|
if (gf->nodes[i]->src[1] == gf->nodes[idx_l0]) {
|
|
gf->nodes[i]->src[1] = inp0;
|
|
}
|
|
}
|
|
|
|
// TODO: instead of rearranging the nodes, we should be able to execute a subset of the compute graph
|
|
for (int i = 1; i < idx_l1 - idx_l0; i++) {
|
|
gf->nodes[i] = gf->nodes[idx_l0 + i];
|
|
gf->grads[i] = gf->grads[idx_l0 + i];
|
|
}
|
|
|
|
// the first node performs the "get_rows" operation, the rest of the nodes get the data from the previous node
|
|
if (mpi_idx != 0) {
|
|
gf->nodes[0]->op = GGML_OP_NONE;
|
|
}
|
|
|
|
gf->n_nodes = idx_l1 - idx_l0;
|
|
|
|
//fprintf(stderr, "%s: node %d: processing %d nodes [%d, %d)\n", __func__, mpi_rank, gf->n_nodes, il0, il1);
|
|
}
|
|
}
|
|
|
|
void ggml_mpi_graph_compute_post(
|
|
struct ggml_mpi_context * ctx_mpi,
|
|
struct ggml_cgraph * gf,
|
|
int n_layers) {
|
|
UNUSED(n_layers);
|
|
|
|
const int mpi_rank = ctx_mpi->rank;
|
|
const int mpi_size = ctx_mpi->size;
|
|
|
|
// send the output data to the next node
|
|
if (mpi_rank > 0) {
|
|
ggml_mpi_tensor_send(gf->nodes[gf->n_nodes - 1], (mpi_rank + 1) % mpi_size);
|
|
}
|
|
}
|