llama.cpp/examples/server/server.cpp
Tobias Lütke 31cfbb1013
Expose generation timings from server & update completions.js (#2116)
* use javascript generators as much cleaner API

Also add ways to access completion as promise and EventSource

* export llama_timings as struct and expose them in server

* update readme, update baked includes

* llama : uniform variable names + struct init

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-05 16:51:13 -04:00

1313 lines
46 KiB
C++

#include "common.h"
#include "llama.h"
#include "build-info.h"
#ifndef NDEBUG
// crash the server in debug mode, otherwise send an http 500 error
#define CPPHTTPLIB_NO_EXCEPTIONS 1
#endif
#include "httplib.h"
#include "json.hpp"
// auto generated files (update with ./deps.sh)
#include "index.html.hpp"
#include "index.js.hpp"
#include "completion.js.hpp"
#ifndef SERVER_VERBOSE
#define SERVER_VERBOSE 1
#endif
using namespace httplib;
using json = nlohmann::json;
struct server_params
{
std::string hostname = "127.0.0.1";
std::string public_path = "examples/server/public";
int32_t port = 8080;
int32_t read_timeout = 600;
int32_t write_timeout = 600;
};
// completion token output with probabilities
struct completion_token_output
{
struct token_prob
{
llama_token tok;
float prob;
};
std::vector<token_prob> probs;
llama_token tok;
};
static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
{
size_t i;
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++)
{
}
return i;
}
enum stop_type
{
STOP_FULL,
STOP_PARTIAL,
};
static bool ends_with(const std::string &str, const std::string &suffix)
{
return str.size() >= suffix.size() &&
0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
}
static size_t find_partial_stop_string(const std::string &stop,
const std::string &text)
{
if (!text.empty() && !stop.empty())
{
const char text_last_char = text.back();
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
{
if (stop[char_index] == text_last_char)
{
const std::string current_partial = stop.substr(0, char_index + 1);
if (ends_with(text, current_partial))
{
return text.size() - char_index - 1;
}
}
}
}
return std::string::npos;
}
template <class Iter>
static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
{
std::string ret;
for (; begin != end; ++begin)
{
ret += llama_token_to_str(ctx, *begin);
}
return ret;
}
static void server_log(const char *level, const char *function, int line,
const char *message, const nlohmann::ordered_json &extra)
{
nlohmann::ordered_json log{
{"timestamp", time(nullptr)},
{"level", level},
{"function", function},
{"line", line},
{"message", message},
};
if (!extra.empty())
{
log.merge_patch(extra);
}
const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace);
fprintf(stdout, "%.*s\n", (int)str.size(), str.data());
fflush(stdout);
}
// format incomplete utf-8 multibyte character for output
static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
{
std::string out = token == -1 ? "" : llama_token_to_str(ctx, token);
// if first bit is 1, meaning it's a partial character
if (out.size() > 0 && (out[0] & 0x80) == 0x80)
{
std::stringstream ss;
ss << std::hex << (out[0] & 0xff);
std::string res(ss.str());
out = "byte: \\x" + res;
}
return out;
}
// convert a vector of completion_token_output to json
static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> probs)
{
json out = json::array();
for (const auto &prob : probs)
{
json probs_for_token = json::array();
for (const auto &p : prob.probs)
{
std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
probs_for_token.push_back(json{
{"tok_str", tok_str},
{"prob", p.prob},
});
}
std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
out.push_back(json{
{"content", tok_str},
{"probs", probs_for_token},
});
}
return out;
}
static bool server_verbose = false;
#if SERVER_VERBOSE != 1
#define LOG_VERBOSE(MSG, ...)
#else
#define LOG_VERBOSE(MSG, ...) \
do \
{ \
if (server_verbose) \
{ \
server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \
} \
} while (0)
#endif
#define LOG_ERROR(MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_INFO(MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
struct llama_server_context
{
bool stream = false;
bool has_next_token = false;
std::string generated_text;
std::vector<completion_token_output> generated_token_probs;
size_t num_prompt_tokens = 0;
size_t num_tokens_predicted = 0;
size_t n_past = 0;
size_t n_remain = 0;
std::vector<llama_token> embd;
std::vector<llama_token> last_n_tokens;
llama_model *model = nullptr;
llama_context *ctx = nullptr;
gpt_params params;
bool truncated = false;
bool stopped_eos = false;
bool stopped_word = false;
bool stopped_limit = false;
std::string stopping_word;
int32_t multibyte_pending = 0;
std::mutex mutex;
std::unique_lock<std::mutex> lock()
{
return std::unique_lock<std::mutex>(mutex);
}
~llama_server_context()
{
if (ctx)
{
llama_free(ctx);
ctx = nullptr;
}
if (model)
{
llama_free_model(model);
model = nullptr;
}
}
void rewind()
{
params.antiprompt.clear();
num_prompt_tokens = 0;
num_tokens_predicted = 0;
generated_text = "";
generated_text.reserve(params.n_ctx);
generated_token_probs.clear();
truncated = false;
stopped_eos = false;
stopped_word = false;
stopped_limit = false;
stopping_word = "";
multibyte_pending = 0;
n_remain = 0;
n_past = 0;
}
bool loadModel(const gpt_params &params_)
{
params = params_;
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (model == nullptr)
{
LOG_ERROR("unable to load model", {{"model", params_.model}});
return false;
}
last_n_tokens.resize(params.n_ctx);
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
return true;
}
void loadPrompt()
{
params.prompt.insert(0, 1, ' '); // always add a first space
std::vector<llama_token> prompt_tokens = ::llama_tokenize(ctx, params.prompt, true);
num_prompt_tokens = prompt_tokens.size();
if (params.n_keep < 0)
{
params.n_keep = (int)num_prompt_tokens;
}
params.n_keep = std::min(params.n_ctx - 4, params.n_keep);
// if input prompt is too big, truncate like normal
if (num_prompt_tokens >= (size_t)params.n_ctx)
{
const int n_left = (params.n_ctx - params.n_keep) / 2;
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin());
LOG_VERBOSE("input truncated", {
{"n_ctx", params.n_ctx},
{"n_keep", params.n_keep},
{"n_left", n_left},
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
});
truncated = true;
prompt_tokens = new_tokens;
}
else
{
const size_t ps = num_prompt_tokens;
std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
}
// compare the evaluated prompt with the new prompt
n_past = common_part(embd, prompt_tokens);
embd = prompt_tokens;
if (n_past == num_prompt_tokens)
{
// we have to evaluate at least 1 token to generate logits.
n_past--;
}
LOG_VERBOSE("prompt ingested", {
{"n_past", n_past},
{"cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past)},
{"to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
});
has_next_token = true;
}
void beginCompletion()
{
// number of tokens to keep when resetting context
n_remain = params.n_predict;
llama_set_rng_seed(ctx, params.seed);
}
completion_token_output nextToken()
{
completion_token_output result;
result.tok = -1;
if (embd.size() >= (size_t)params.n_ctx)
{
// Reset context
const int n_left = (params.n_ctx - params.n_keep) / 2;
std::vector<llama_token> new_tokens(embd.begin(), embd.begin() + params.n_keep);
new_tokens.insert(new_tokens.end(), embd.end() - n_left, embd.end());
embd = new_tokens;
n_past = params.n_keep;
truncated = true;
LOG_VERBOSE("input truncated", {
{"n_ctx", params.n_ctx},
{"n_keep", params.n_keep},
{"n_left", n_left},
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
});
}
while (n_past < embd.size())
{
int n_eval = (int)embd.size() - n_past;
if (n_eval > params.n_batch)
{
n_eval = params.n_batch;
}
if (llama_eval(ctx, &embd[n_past], n_eval, n_past, params.n_threads))
{
LOG_ERROR("failed to eval", {
{"n_eval", n_eval},
{"n_past", n_past},
{"n_threads", params.n_threads},
{"embd", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
});
has_next_token = false;
return result;
}
n_past += n_eval;
}
if (params.n_predict == 0)
{
has_next_token = false;
result.tok = llama_token_eos();
return result;
}
// out of user input, sample next token
const float temp = params.temp;
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
const float top_p = params.top_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
const int32_t repeat_last_n = params.repeat_last_n < 0 ? params.n_ctx : params.repeat_last_n;
const float repeat_penalty = params.repeat_penalty;
const float alpha_presence = params.presence_penalty;
const float alpha_frequency = params.frequency_penalty;
const int mirostat = params.mirostat;
const float mirostat_tau = params.mirostat_tau;
const float mirostat_eta = params.mirostat_eta;
const bool penalize_nl = params.penalize_nl;
const int32_t n_probs = params.n_probs;
{
auto *logits = llama_get_logits(ctx);
auto n_vocab = llama_n_vocab(ctx);
// Apply params.logit_bias map
for (const auto &it : params.logit_bias)
{
logits[it.first] += it.second;
}
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++)
{
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false};
// Apply penalties
float nl_logit = logits[llama_token_nl()];
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), params.n_ctx);
llama_sample_repetition_penalty(ctx, &candidates_p,
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
last_n_repeat, repeat_penalty);
llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
last_n_repeat, alpha_frequency, alpha_presence);
if (!penalize_nl)
{
logits[llama_token_nl()] = nl_logit;
}
if (temp <= 0)
{
// Greedy sampling
result.tok = llama_sample_token_greedy(ctx, &candidates_p);
if (n_probs > 0)
{
llama_sample_softmax(ctx, &candidates_p);
}
}
else
{
if (mirostat == 1)
{
static float mirostat_mu = 2.0f * mirostat_tau;
const int mirostat_m = 100;
llama_sample_temperature(ctx, &candidates_p, temp);
result.tok = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
}
else if (mirostat == 2)
{
static float mirostat_mu = 2.0f * mirostat_tau;
llama_sample_temperature(ctx, &candidates_p, temp);
result.tok = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
}
else
{
// Temperature sampling
size_t min_keep = std::max(1, n_probs);
llama_sample_top_k(ctx, &candidates_p, top_k, min_keep);
llama_sample_tail_free(ctx, &candidates_p, tfs_z, min_keep);
llama_sample_typical(ctx, &candidates_p, typical_p, min_keep);
llama_sample_top_p(ctx, &candidates_p, top_p, min_keep);
llama_sample_temperature(ctx, &candidates_p, temp);
result.tok = llama_sample_token(ctx, &candidates_p);
}
}
for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i)
{
result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p});
}
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(result.tok);
num_tokens_predicted++;
}
// add it to the context
embd.push_back(result.tok);
// decrement remaining sampling budget
--n_remain;
if (!embd.empty() && embd.back() == llama_token_eos())
{
// stopping_word = llama_token_to_str(ctx, embd.back());
has_next_token = false;
stopped_eos = true;
LOG_VERBOSE("eos token found", {});
return result;
}
has_next_token = params.n_predict == -1 || n_remain != 0;
return result;
}
size_t findStoppingStrings(const std::string &text, const size_t last_token_size,
const stop_type type)
{
size_t stop_pos = std::string::npos;
for (const std::string &word : params.antiprompt)
{
size_t pos;
if (type == STOP_FULL)
{
const size_t tmp = word.size() + last_token_size;
const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
pos = text.find(word, from_pos);
}
else
{
pos = find_partial_stop_string(word, text);
}
if (pos != std::string::npos &&
(stop_pos == std::string::npos || pos < stop_pos))
{
if (type == STOP_FULL)
{
stopping_word = word;
stopped_word = true;
has_next_token = false;
}
stop_pos = pos;
}
}
return stop_pos;
}
completion_token_output doCompletion()
{
const completion_token_output token_with_probs = nextToken();
const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(ctx, token_with_probs.tok);
generated_text += token_text;
if (params.n_probs > 0)
{
generated_token_probs.push_back(token_with_probs);
}
if (multibyte_pending > 0)
{
multibyte_pending -= token_text.size();
}
else if (token_text.size() == 1)
{
const char c = token_text[0];
// 2-byte characters: 110xxxxx 10xxxxxx
if ((c & 0xE0) == 0xC0)
{
multibyte_pending = 1;
// 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
}
else if ((c & 0xF0) == 0xE0)
{
multibyte_pending = 2;
// 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
}
else if ((c & 0xF8) == 0xF0)
{
multibyte_pending = 3;
}
else
{
multibyte_pending = 0;
}
}
if (multibyte_pending > 0 && !has_next_token)
{
has_next_token = true;
n_remain++;
}
if (!has_next_token && n_remain == 0)
{
stopped_limit = true;
}
LOG_VERBOSE("next token", {
{"token", token_with_probs.tok},
{"token_text", tokens_to_output_formatted_string(ctx, token_with_probs.tok)},
{"has_next_token", has_next_token},
{"n_remain", n_remain},
{"num_tokens_predicted", num_tokens_predicted},
{"stopped_eos", stopped_eos},
{"stopped_word", stopped_word},
{"stopped_limit", stopped_limit},
{"stopping_word", stopping_word},
});
return token_with_probs;
}
std::vector<float> getEmbedding()
{
static const int n_embd = llama_n_embd(ctx);
if (!params.embedding)
{
LOG_WARNING("embedding disabled", {
{"params.embedding", params.embedding},
});
return std::vector<float>(n_embd, 0.0f);
}
const float *data = llama_get_embeddings(ctx);
std::vector<float> embedding(data, data + n_embd);
return embedding;
}
};
static void server_print_usage(const char *argv0, const gpt_params &params,
const server_params &sparams)
{
fprintf(stderr, "usage: %s [options]\n", argv0);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
fprintf(stderr, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
fprintf(stderr, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
fprintf(stderr, " not recommended: doubles context memory required and no measurable increase in quality\n");
if (llama_mlock_supported())
{
fprintf(stderr, " --mlock force system to keep model in RAM rather than swapping or compressing\n");
}
if (llama_mmap_supported())
{
fprintf(stderr, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
}
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
fprintf(stderr, " -ngl N, --n-gpu-layers N\n");
fprintf(stderr, " number of layers to store in VRAM\n");
fprintf(stderr, " -ts SPLIT --tensor-split SPLIT\n");
fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
fprintf(stderr, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
fprintf(stderr, " -lv, --low-vram don't allocate VRAM scratch buffer\n");
#endif
fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
fprintf(stderr, " -a ALIAS, --alias ALIAS\n");
fprintf(stderr, " set an alias for the model, will be added as `model` field in completion response\n");
fprintf(stderr, " --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
fprintf(stderr, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
fprintf(stderr, " --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
fprintf(stderr, " --port PORT port to listen (default (default: %d)\n", sparams.port);
fprintf(stderr, " --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
fprintf(stderr, " -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
fprintf(stderr, " --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
fprintf(stderr, "\n");
}
static void server_params_parse(int argc, char **argv, server_params &sparams,
gpt_params &params)
{
gpt_params default_params;
server_params default_sparams;
std::string arg;
bool invalid_param = false;
for (int i = 1; i < argc; i++)
{
arg = argv[i];
if (arg == "--port")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
sparams.port = std::stoi(argv[i]);
}
else if (arg == "--host")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
sparams.hostname = argv[i];
}
else if (arg == "--path")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
sparams.public_path = argv[i];
}
else if (arg == "--timeout" || arg == "-to")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
sparams.read_timeout = std::stoi(argv[i]);
sparams.write_timeout = std::stoi(argv[i]);
}
else if (arg == "-m" || arg == "--model")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.model = argv[i];
}
else if (arg == "-a" || arg == "--alias")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.model_alias = argv[i];
}
else if (arg == "-h" || arg == "--help")
{
server_print_usage(argv[0], default_params, default_sparams);
exit(0);
}
else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.n_ctx = std::stoi(argv[i]);
}
else if (arg == "--memory-f32" || arg == "--memory_f32")
{
params.memory_f16 = false;
}
else if (arg == "--threads" || arg == "-t")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.n_threads = std::stoi(argv[i]);
}
else if (arg == "-b" || arg == "--batch-size")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.n_batch = std::stoi(argv[i]);
params.n_batch = std::min(512, params.n_batch);
}
else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
params.n_gpu_layers = std::stoi(argv[i]);
#else
LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
"See main README.md for information on enabling GPU BLAS support",
{{"n_gpu_layers", params.n_gpu_layers}});
#endif
}
else if (arg == "--tensor-split" || arg == "-ts")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
#ifdef GGML_USE_CUBLAS
std::string arg_next = argv[i];
// split string by , and /
const std::regex regex{R"([,/]+)"};
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
std::vector<std::string> split_arg{it, {}};
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device)
{
if (i_device < split_arg.size())
{
params.tensor_split[i_device] = std::stof(split_arg[i_device]);
}
else
{
params.tensor_split[i_device] = 0.0f;
}
}
#else
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.", {});
#endif // GGML_USE_CUBLAS
}
else if (arg == "--low-vram" || arg == "-lv")
{
#ifdef GGML_USE_CUBLAS
params.low_vram = true;
#else
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n");
#endif // GGML_USE_CUBLAS
}
else if (arg == "--main-gpu" || arg == "-mg")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
#ifdef GGML_USE_CUBLAS
params.main_gpu = std::stoi(argv[i]);
#else
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
#endif
}
else if (arg == "--lora")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.lora_adapter = argv[i];
params.use_mmap = false;
}
else if (arg == "--lora-base")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.lora_base = argv[i];
}
else if (arg == "-v" || arg == "--verbose")
{
#if SERVER_VERBOSE != 1
LOG_WARNING("server.cpp is not built with verbose logging.", {});
#else
server_verbose = true;
#endif
}
else if (arg == "--mlock")
{
params.use_mlock = true;
}
else if (arg == "--no-mmap")
{
params.use_mmap = false;
}
else if (arg == "--embedding")
{
params.embedding = true;
}
else
{
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
server_print_usage(argv[0], default_params, default_sparams);
exit(1);
}
}
if (invalid_param)
{
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
server_print_usage(argv[0], default_params, default_sparams);
exit(1);
}
}
static json format_generation_settings(llama_server_context &llama)
{
const auto eos_bias = llama.params.logit_bias.find(llama_token_eos());
const bool ignore_eos = eos_bias != llama.params.logit_bias.end() &&
eos_bias->second < 0.0f && std::isinf(eos_bias->second);
return json{
{"n_ctx", llama.params.n_ctx},
{"model", llama.params.model_alias},
{"seed", llama.params.seed},
{"temp", llama.params.temp},
{"top_k", llama.params.top_k},
{"top_p", llama.params.top_p},
{"tfs_z", llama.params.tfs_z},
{"typical_p", llama.params.typical_p},
{"repeat_last_n", llama.params.repeat_last_n},
{"repeat_penalty", llama.params.repeat_penalty},
{"presence_penalty", llama.params.presence_penalty},
{"frequency_penalty", llama.params.frequency_penalty},
{"mirostat", llama.params.mirostat},
{"mirostat_tau", llama.params.mirostat_tau},
{"mirostat_eta", llama.params.mirostat_eta},
{"penalize_nl", llama.params.penalize_nl},
{"stop", llama.params.antiprompt},
{"n_predict", llama.params.n_predict},
{"n_keep", llama.params.n_keep},
{"ignore_eos", ignore_eos},
{"stream", llama.stream},
{"logit_bias", llama.params.logit_bias},
{"n_probs", llama.params.n_probs},
};
}
static json format_embedding_response(llama_server_context &llama)
{
return json{
{"embedding", llama.getEmbedding()},
};
}
static json format_timings(llama_server_context &llama)
{
const auto timings = llama_get_timings(llama.ctx);
assert(timings.n_eval == llama.num_tokens_predicted);
return json{
{"prompt_n", timings.n_eval},
{"prompt_ms", timings.t_p_eval_ms},
{"prompt_per_token_ms", timings.t_p_eval_ms / timings.n_p_eval},
{"prompt_per_second", 1e3 / timings.t_p_eval_ms * timings.n_p_eval},
{"predicted_n", timings.n_eval},
{"predicted_ms", timings.t_eval_ms},
{"predicted_per_token_ms", timings.t_eval_ms / timings.n_eval},
{"predicted_per_second", 1e3 / timings.t_eval_ms * timings.n_eval},
};
}
static json format_final_response(llama_server_context &llama, const std::string &content, const std::vector<completion_token_output> &probs)
{
json res = json{
{"content", content},
{"stop", true},
{"model", llama.params.model_alias},
{"tokens_predicted", llama.num_tokens_predicted},
{"tokens_evaluated", llama.num_prompt_tokens},
{"generation_settings", format_generation_settings(llama)},
{"prompt", llama.params.prompt},
{"truncated", llama.truncated},
{"stopped_eos", llama.stopped_eos},
{"stopped_word", llama.stopped_word},
{"stopped_limit", llama.stopped_limit},
{"stopping_word", llama.stopping_word},
{"tokens_cached", llama.n_past},
{"tokens_predicted", llama.num_tokens_predicted},
{"timings", format_timings(llama)},
};
if (llama.params.n_probs > 0)
{
res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
}
return res;
}
static json format_partial_response(llama_server_context &llama, const std::string &content, const std::vector<completion_token_output> &probs)
{
json res = json{
{"content", content},
{"stop", false},
};
if (llama.params.n_probs > 0)
{
res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
}
return res;
}
static json format_tokenizer_response(const std::vector<llama_token> &tokens)
{
return json{
{"tokens", tokens}};
}
static void parse_options_completion(const json &body, llama_server_context &llama)
{
gpt_params default_params;
llama.stream = body.value("stream", false);
llama.params.n_predict = body.value("n_predict", default_params.n_predict);
llama.params.top_k = body.value("top_k", default_params.top_k);
llama.params.top_p = body.value("top_p", default_params.top_p);
llama.params.tfs_z = body.value("tfs_z", default_params.tfs_z);
llama.params.typical_p = body.value("typical_p", default_params.typical_p);
llama.params.repeat_last_n = body.value("repeat_last_n", default_params.repeat_last_n);
llama.params.temp = body.value("temperature", default_params.temp);
llama.params.repeat_penalty = body.value("repeat_penalty", default_params.repeat_penalty);
llama.params.presence_penalty = body.value("presence_penalty", default_params.presence_penalty);
llama.params.frequency_penalty = body.value("frequency_penalty", default_params.frequency_penalty);
llama.params.mirostat = body.value("mirostat", default_params.mirostat);
llama.params.mirostat_tau = body.value("mirostat_tau", default_params.mirostat_tau);
llama.params.mirostat_eta = body.value("mirostat_eta", default_params.mirostat_eta);
llama.params.penalize_nl = body.value("penalize_nl", default_params.penalize_nl);
llama.params.n_keep = body.value("n_keep", default_params.n_keep);
llama.params.seed = body.value("seed", default_params.seed);
llama.params.prompt = body.value("prompt", default_params.prompt);
llama.params.n_probs = body.value("n_probs", default_params.n_probs);
llama.params.logit_bias.clear();
if (body.value("ignore_eos", false))
{
llama.params.logit_bias[llama_token_eos()] = -INFINITY;
}
const auto &logit_bias = body.find("logit_bias");
if (logit_bias != body.end() && logit_bias->is_array())
{
const int n_vocab = llama_n_vocab(llama.ctx);
for (const auto &el : *logit_bias)
{
if (el.is_array() && el.size() == 2 && el[0].is_number_integer())
{
llama_token tok = el[0].get<llama_token>();
if (tok >= 0 && tok < n_vocab)
{
if (el[1].is_number())
{
llama.params.logit_bias[tok] = el[1].get<float>();
}
else if (el[1].is_boolean() && !el[1].get<bool>())
{
llama.params.logit_bias[tok] = -INFINITY;
}
}
}
}
}
llama.params.antiprompt.clear();
const auto &stop = body.find("stop");
if (stop != body.end() && stop->is_array())
{
for (const auto &word : *stop)
{
if (!word.empty())
{
llama.params.antiprompt.push_back(word);
}
}
}
LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama));
}
static void log_server_request(const Request &req, const Response &res)
{
LOG_INFO("request", {
{"remote_addr", req.remote_addr},
{"remote_port", req.remote_port},
{"status", res.status},
{"method", req.method},
{"path", req.path},
{"params", req.params},
});
LOG_VERBOSE("request", {
{"request", req.body},
{"response", res.body},
});
}
int main(int argc, char **argv)
{
// own arguments required by this example
gpt_params params;
server_params sparams;
// struct that contains llama context and inference
llama_server_context llama;
server_params_parse(argc, argv, sparams, params);
if (params.model_alias == "unknown")
{
params.model_alias = params.model;
}
llama_init_backend(params.numa);
LOG_INFO("build info", {{"build", BUILD_NUMBER},
{"commit", BUILD_COMMIT}});
LOG_INFO("system info", {
{"n_threads", params.n_threads},
{"total_threads", std::thread::hardware_concurrency()},
{"system_info", llama_print_system_info()},
});
// load the model
if (!llama.loadModel(params))
{
return 1;
}
Server svr;
svr.set_default_headers({{"Server", "llama.cpp"},
{"Access-Control-Allow-Origin", "*"},
{"Access-Control-Allow-Headers", "content-type"}});
// this is only called if no index.html is found in the public --path
svr.Get("/", [](const Request &, Response &res)
{
res.set_content(reinterpret_cast<const char*>(&index_html), index_html_len, "text/html");
return false; });
// this is only called if no index.js is found in the public --path
svr.Get("/index.js", [](const Request &, Response &res)
{
res.set_content(reinterpret_cast<const char *>(&index_js), index_js_len, "text/javascript");
return false; });
// this is only called if no index.html is found in the public --path
svr.Get("/completion.js", [](const Request &, Response &res)
{
res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript");
return false; });
svr.Post("/completion", [&llama](const Request &req, Response &res)
{
auto lock = llama.lock();
llama.rewind();
llama_reset_timings(llama.ctx);
parse_options_completion(json::parse(req.body), llama);
llama.loadPrompt();
llama.beginCompletion();
if (!llama.stream) {
size_t stop_pos = std::string::npos;
while (llama.has_next_token) {
const completion_token_output token_with_probs = llama.doCompletion();
const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(llama.ctx, token_with_probs.tok);
stop_pos = llama.findStoppingStrings(llama.generated_text,
token_text.size(), STOP_FULL);
}
if (stop_pos == std::string::npos) {
stop_pos = llama.findStoppingStrings(llama.generated_text, 0, STOP_PARTIAL);
}
if (stop_pos != std::string::npos) {
llama.generated_text.erase(llama.generated_text.begin() + stop_pos,
llama.generated_text.end());
}
const json data = format_final_response(llama, llama.generated_text, llama.generated_token_probs);
llama_print_timings(llama.ctx);
res.set_content(data.dump(-1, ' ', false, json::error_handler_t::replace),
"application/json");
} else {
const auto chunked_content_provider = [&](size_t, DataSink & sink) {
size_t sent_count = 0;
size_t sent_token_probs_index = 0;
while (llama.has_next_token) {
const completion_token_output token_with_probs = llama.doCompletion();
const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(llama.ctx, token_with_probs.tok);
if (llama.multibyte_pending > 0) {
continue;
}
size_t pos = std::min(sent_count, llama.generated_text.size());
const std::string str_test = llama.generated_text.substr(pos);
size_t stop_pos =
llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL);
if (stop_pos != std::string::npos) {
llama.generated_text.erase(
llama.generated_text.begin() + pos + stop_pos,
llama.generated_text.end());
pos = std::min(sent_count, llama.generated_text.size());
} else {
stop_pos = llama.findStoppingStrings(str_test, token_text.size(),
STOP_PARTIAL);
}
const std::string to_send = llama.generated_text.substr(pos, stop_pos);
sent_count += to_send.size();
std::vector<completion_token_output> probs_output = {};
if (llama.params.n_probs > 0) {
const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
if (probs_pos < probs_stop_pos) {
probs_output = std::vector<completion_token_output>(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos);
}
sent_token_probs_index = probs_stop_pos;
}
const json data = llama.has_next_token
? format_partial_response(llama, to_send, probs_output)
// Generation is done, send extra information.
: format_final_response(llama, to_send, llama.generated_token_probs);
const std::string str =
"data: " +
data.dump(-1, ' ', false, json::error_handler_t::replace) +
"\n\n";
LOG_VERBOSE("data stream", {
{ "to_send", str }
});
if (!sink.write(str.data(), str.size())) {
LOG_VERBOSE("stream closed", {});
llama_print_timings(llama.ctx);
return false;
}
}
llama_print_timings(llama.ctx);
sink.done();
return true;
};
res.set_chunked_content_provider("text/event-stream", chunked_content_provider);
} });
svr.Get("/model.json", [&llama](const Request &, Response &res)
{
const json data = format_generation_settings(llama);
return res.set_content(data.dump(), "application/json"); });
svr.Options(R"(/.*)", [](const Request &, Response &res)
{ return res.set_content("", "application/json"); });
svr.Post("/tokenize", [&llama](const Request &req, Response &res)
{
auto lock = llama.lock();
const json body = json::parse(req.body);
const std::string content = body.value("content", "");
const std::vector<llama_token> tokens = llama_tokenize(llama.ctx, content, false);
const json data = format_tokenizer_response(tokens);
return res.set_content(data.dump(), "application/json"); });
svr.Post("/embedding", [&llama](const Request &req, Response &res)
{
auto lock = llama.lock();
const json body = json::parse(req.body);
llama.rewind();
llama_reset_timings(llama.ctx);
llama.params.prompt = body.value("content", "");
llama.params.n_predict = 0;
llama.loadPrompt();
llama.beginCompletion();
llama.doCompletion();
const json data = format_embedding_response(llama);
return res.set_content(data.dump(), "application/json"); });
svr.set_logger(log_server_request);
svr.set_exception_handler([](const Request &, Response &res, std::exception_ptr ep)
{
const auto * fmt = "500 Internal Server Error\n%s";
char buf[BUFSIZ];
try {
std::rethrow_exception(std::move(ep));
} catch (std::exception & e) {
snprintf(buf, sizeof(buf), fmt, e.what());
} catch (...) {
snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
}
res.set_content(buf, "text/plain");
res.status = 500; });
svr.set_error_handler([](const Request &, Response &res)
{
res.set_content("File Not Found", "text/plain");
res.status = 404; });
// set timeouts and change hostname and port
svr.set_read_timeout(sparams.read_timeout);
svr.set_write_timeout(sparams.write_timeout);
if (!svr.bind_to_port(sparams.hostname, sparams.port))
{
fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
return 1;
}
// Set the base directory for serving static files
svr.set_base_dir(sparams.public_path);
// to make it ctrl+clickable:
fprintf(stdout, "\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
LOG_INFO("HTTP server listening", {
{"hostname", sparams.hostname},
{"port", sparams.port},
});
if (!svr.listen_after_bind())
{
return 1;
}
return 0;
}