mirror of
https://git.adityakumar.xyz/llama.cpp.git
synced 2024-11-09 23:29:44 +00:00
build : fix several cast and printf warnings (#2499)
This commit is contained in:
parent
8183159cf3
commit
ff966e7ca6
4 changed files with 7 additions and 7 deletions
|
@ -30,7 +30,7 @@ struct MyModel* create_mymodel(int argc, char ** argv) {
|
||||||
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||||
|
|
||||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||||
params.seed = time(NULL);
|
params.seed = uint32_t(time(NULL));
|
||||||
}
|
}
|
||||||
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
|
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
|
||||||
|
|
||||||
|
|
|
@ -405,7 +405,7 @@ namespace grammar_parser {
|
||||||
for (size_t i = 0, end = state.rules.size(); i < end; i++) {
|
for (size_t i = 0, end = state.rules.size(); i < end; i++) {
|
||||||
// fprintf(file, "%zu: ", i);
|
// fprintf(file, "%zu: ", i);
|
||||||
// print_rule_binary(file, state.rules[i]);
|
// print_rule_binary(file, state.rules[i]);
|
||||||
print_rule(file, i, state.rules[i], symbol_id_names);
|
print_rule(file, uint32_t(i), state.rules[i], symbol_id_names);
|
||||||
// fprintf(file, "\n");
|
// fprintf(file, "\n");
|
||||||
}
|
}
|
||||||
} catch (const std::exception & err) {
|
} catch (const std::exception & err) {
|
||||||
|
|
|
@ -153,7 +153,7 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||||
}
|
}
|
||||||
|
|
||||||
size_t hs_task_count = prompt_lines.size()/6;
|
size_t hs_task_count = prompt_lines.size()/6;
|
||||||
fprintf(stderr, "%s : loaded %lu tasks from prompt.\n", __func__, hs_task_count);
|
fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
|
||||||
|
|
||||||
// This is needed as usual for LLaMA models
|
// This is needed as usual for LLaMA models
|
||||||
bool prepend_bos = true;
|
bool prepend_bos = true;
|
||||||
|
@ -178,7 +178,7 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||||
double ending_logprob[4];
|
double ending_logprob[4];
|
||||||
};
|
};
|
||||||
|
|
||||||
fprintf(stderr, "%s : selecting %lu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") );
|
fprintf(stderr, "%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") );
|
||||||
|
|
||||||
// Select and read data from prompt lines
|
// Select and read data from prompt lines
|
||||||
hs_data_t *hs_data = new hs_data_t[hs_task_count];
|
hs_data_t *hs_data = new hs_data_t[hs_task_count];
|
||||||
|
@ -223,7 +223,7 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||||
|
|
||||||
// Stop if query wont fit the ctx window
|
// Stop if query wont fit the ctx window
|
||||||
if (query_size > (size_t)params.n_ctx) {
|
if (query_size > (size_t)params.n_ctx) {
|
||||||
fprintf(stderr, "%s : number of tokens in query %lu > n_ctxl\n", __func__, query_size);
|
fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -284,7 +284,7 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
||||||
}
|
}
|
||||||
|
|
||||||
// Print the accumulated accuracy mean x 100
|
// Print the accumulated accuracy mean x 100
|
||||||
printf("%li\t%.8lf\n",task_idx+1, acc/double(task_idx+1)*100.0);
|
printf("%zu\t%.8lf\n",task_idx+1, acc/double(task_idx+1)*100.0);
|
||||||
fflush(stdout);
|
fflush(stdout);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -123,7 +123,7 @@ int main(int argc, char ** argv)
|
||||||
// Evaluate the tokens :
|
// Evaluate the tokens :
|
||||||
//---------------------------------
|
//---------------------------------
|
||||||
|
|
||||||
if ( llama_eval( ctx , tokens_list.data() , tokens_list.size() , llama_get_kv_cache_token_count( ctx ) , params.n_threads ) )
|
if ( llama_eval( ctx , tokens_list.data() , int(tokens_list.size()) , llama_get_kv_cache_token_count( ctx ) , params.n_threads ) )
|
||||||
{
|
{
|
||||||
fprintf( stderr, "%s : failed to eval\n" , __func__ );
|
fprintf( stderr, "%s : failed to eval\n" , __func__ );
|
||||||
return 1;
|
return 1;
|
||||||
|
|
Loading…
Reference in a new issue