OpenCL: Fix duplication of layers in VRAM and RAM, add GPU mul kernel (#1653)

* Use events instead of clFinish, where possible

* OpenCL: Don't load gpu layers into RAM, add mul_f32 kernel

* Reduce queueing overhead for contiguous tensors by using single mul kernel call

* Adapt to #1612 cl_mem malloc changes

* Reduce code duplication between cuda and opencl branches

* Improve implementation
This commit is contained in:
0cc4m 2023-06-04 08:12:05 +02:00 committed by GitHub
parent d8bd0013e8
commit dcb2ed4826
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 210 additions and 40 deletions

View file

@ -3,6 +3,7 @@
#include <array> #include <array>
#include <atomic> #include <atomic>
#include <sstream> #include <sstream>
#include <vector>
#define CL_TARGET_OPENCL_VERSION 110 #define CL_TARGET_OPENCL_VERSION 110
#include <clblast.h> #include <clblast.h>
@ -197,6 +198,18 @@ __kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float
} }
); );
std::string mul_template = MULTILINE_QUOTE(
__kernel void KERNEL_NAME(__global TYPE* x, const int x_offset, __global TYPE* y, const int y_offset, __global TYPE* dst, const int dst_offset, const int ky) {
const int i = get_group_id(0)*get_local_size(0) + get_local_id(0);
if (i >= get_global_size(0)) {
return;
}
dst[dst_offset + i] = x[x_offset + i] * y[y_offset + i%ky];
}
);
#define CL_CHECK(err) \ #define CL_CHECK(err) \
do { \ do { \
cl_int err_ = (err); \ cl_int err_ = (err); \
@ -239,6 +252,13 @@ std::array<std::string, 30> dequant_mul_mat_vec_str_values = {
"convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16" "convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16"
}; };
std::array<std::string, 2> mul_str_keys = {
"KERNEL_NAME", "TYPE"
};
std::array<std::string, 2> mul_str_values = {
"mul_f32", "float"
};
std::string& replace(std::string& s, const std::string& from, const std::string& to) { std::string& replace(std::string& s, const std::string& from, const std::string& to) {
size_t pos = 0; size_t pos = 0;
while ((pos = s.find(from, pos)) != std::string::npos) { while ((pos = s.find(from, pos)) != std::string::npos) {
@ -261,6 +281,13 @@ std::string generate_kernels() {
src << dequant_kernel << '\n'; src << dequant_kernel << '\n';
src << dmmv_kernel << '\n'; src << dmmv_kernel << '\n';
} }
for (size_t i = 0; i < mul_str_values.size(); i += mul_str_keys.size()) {
std::string mul_kernel = mul_template;
for (size_t j = 0; j < mul_str_keys.size(); j++) {
replace(mul_kernel, mul_str_keys[j], mul_str_values[i + j]);
}
src << mul_kernel << '\n';
}
return src.str(); return src.str();
} }
@ -272,6 +299,7 @@ static cl_program program;
static cl_kernel convert_row_f16_cl; static cl_kernel convert_row_f16_cl;
static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl; static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl;
static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl; static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl;
static cl_kernel mul_f32_cl;
static bool fp16_support; static bool fp16_support;
static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) { static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) {
@ -508,6 +536,9 @@ void ggml_cl_init(void) {
CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err)); CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err));
CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err)); CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err));
CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err)); CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err));
// mul kernel
CL_CHECK((mul_f32_cl = clCreateKernel(program, "mul_f32", &err), err));
} }
static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) { static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) {
@ -644,6 +675,98 @@ static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t o
return err; return err;
} }
static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src1->backend == GGML_BACKEND_CL);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[2];
const int64_t ne0 = ne00 * ne01 * ne02 * ne03;
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int64_t ne12 = src1->ne[2];
const int64_t ne13 = src1->ne[3];
const int64_t nb10 = src1->nb[0];
const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3];
size_t x_size;
size_t d_size;
cl_mem d_X = ggml_cl_pool_malloc(ne0 * sizeof(float), &x_size, CL_MEM_READ_ONLY); // src0
cl_mem d_Y = (cl_mem) src1->data; // src1 is already on device, broadcasted.
cl_mem d_D = ggml_cl_pool_malloc(ne0 * sizeof(float), &d_size, CL_MEM_WRITE_ONLY); // dst
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
const int i0 = i03*ne02 + i02;
cl_event ev;
// copy src0 to device
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, i0, src0, i03, i02, &ev));
if (nb10 == sizeof(float)) {
// Contiguous, avoid overhead from queueing many kernel runs
const int64_t i13 = i03%ne13;
const int64_t i12 = i02%ne12;
const int i1 = i13*ne12*ne11 + i12*ne11;
cl_int x_offset = 0;
cl_int y_offset = i1*ne10;
cl_int d_offset = 0;
size_t global = ne00 * ne01;
cl_int ky = ne10;
CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
} else {
for (int64_t i01 = 0; i01 < ne01; i01++) {
const int64_t i13 = i03%ne13;
const int64_t i12 = i02%ne12;
const int64_t i11 = i01%ne11;
const int i1 = i13*ne12*ne11 + i12*ne11 + i11;
cl_int x_offset = i01*ne00;
cl_int y_offset = i1*ne10;
cl_int d_offset = i01*ne00;
// compute
size_t global = ne00;
cl_int ky = ne10;
CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
}
}
CL_CHECK(clReleaseEvent(ev));
CL_CHECK(clFinish(queue));
// copy dst to host
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * ne00*ne01, d, 0, NULL, NULL));
}
}
ggml_cl_pool_free(d_X, x_size);
ggml_cl_pool_free(d_D, d_size);
}
void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
ggml_cl_mul_f32(src0, src1, dst);
}
static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const int64_t ne00 = src0->ne[0]; const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1]; const int64_t ne01 = src0->ne[1];
@ -860,13 +983,15 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type); cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type);
GGML_ASSERT(to_fp32_cl != nullptr); GGML_ASSERT(to_fp32_cl != nullptr);
size_t ev_idx = 0;
std::vector<cl_event> events;
for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i02 = 0; i02 < ne02; i02++) {
cl_event ev_sgemm;
// copy src0 to device if necessary // copy src0 to device if necessary
if (src0->backend == GGML_BACKEND_CPU) { if (src0->backend == GGML_BACKEND_CPU) {
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, NULL)); events.emplace_back();
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
} else if (src0->backend == GGML_BACKEND_CL) { } else if (src0->backend == GGML_BACKEND_CL) {
d_Q = (cl_mem) src0->data; d_Q = (cl_mem) src0->data;
} else { } else {
@ -874,30 +999,32 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
} }
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
// copy src1 to device // copy src1 to device
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL)); events.emplace_back();
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, events.data() + ev_idx++));
// compute // compute
const size_t global = ne01 * CL_DMMV_BLOCK_SIZE; const size_t global = ne01 * CL_DMMV_BLOCK_SIZE;
const size_t local = CL_DMMV_BLOCK_SIZE; const size_t local = CL_DMMV_BLOCK_SIZE;
const cl_int ncols = ne00; const cl_int ncols = ne00;
events.emplace_back();
CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q)); CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL)); CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL));
CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y)); CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y));
CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D)); CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D));
CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols)); CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols));
CL_CHECK(clFinish(queue)); CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, 0, NULL, &ev_sgemm));
} else { // general dequantization kernel + CLBlast matrix matrix multiplication } else { // general dequantization kernel + CLBlast matrix matrix multiplication
// convert src0 to fp32 on device // convert src0 to fp32 on device
const size_t global = x_ne; const size_t global = x_ne;
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q)); CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X)); CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
CL_CHECK(clFinish(queue)); CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, NULL, 0, NULL, NULL));
// copy src1 to device // copy src1 to device
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL)); CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
events.emplace_back();
// wait for conversion // wait for conversion
CL_CHECK(clFinish(queue)); CL_CHECK(clFinish(queue));
@ -910,7 +1037,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
d_Y, 0, ne10, d_Y, 0, ne10,
beta, beta,
d_D, 0, ne01, d_D, 0, ne01,
&queue, &ev_sgemm); &queue, events.data() + ev_idx++);
if (status != clblast::StatusCode::kSuccess) { if (status != clblast::StatusCode::kSuccess) {
GGML_ASSERT(false); GGML_ASSERT(false);
@ -919,8 +1046,13 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
// copy dst to host // copy dst to host
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL)); CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL));
clReleaseEvent(ev_sgemm); for (auto *event : events) {
clReleaseEvent(event);
}
ev_idx = 0;
events.clear();
} }
} }
@ -1026,3 +1158,33 @@ void ggml_cl_transform_tensor(ggml_tensor * tensor) {
tensor->data = dst; tensor->data = dst;
tensor->backend = GGML_BACKEND_CL; tensor->backend = GGML_BACKEND_CL;
} }
void ggml_cl_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) {
cl_int err;
FILE * fp = fopen(fname, "rb");
const size_t size = ggml_nbytes(tensor);
cl_mem dst;
CL_CHECK((dst = clCreateBuffer(context, CL_MEM_READ_ONLY, size, nullptr, &err), err));
void * buf_host = malloc(size);
#ifdef _WIN32
int ret = _fseeki64(fp, (__int64) offset, SEEK_SET);
#else
int ret = fseek(fp, (long) offset, SEEK_SET);
#endif
GGML_ASSERT(ret == 0); // same
size_t ret2 = fread(buf_host, size, 1, fp);
if (ret2 != 1) {
fprintf(stderr, "unexpectedly reached end of file");
exit(1);
}
clEnqueueWriteBuffer(queue, dst, CL_TRUE, 0, size, buf_host, 0, nullptr, nullptr);
tensor->data = dst;
free(buf_host);
fclose(fp);
}

View file

@ -8,6 +8,7 @@ extern "C" {
void ggml_cl_init(void); void ggml_cl_init(void);
void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize); void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
@ -16,6 +17,7 @@ void * ggml_cl_host_malloc(size_t size);
void ggml_cl_host_free(void * ptr); void ggml_cl_host_free(void * ptr);
void ggml_cl_transform_tensor(struct ggml_tensor * tensor); void ggml_cl_transform_tensor(struct ggml_tensor * tensor);
void ggml_cl_load_data(const char * fname, struct ggml_tensor * tensor, size_t offset);
#ifdef __cplusplus #ifdef __cplusplus
} }

7
ggml.c
View file

@ -8134,6 +8134,13 @@ static void ggml_compute_forward_mul_f32(
} }
return; return;
} }
#elif defined(GGML_USE_CLBLAST)
if (src1->backend == GGML_BACKEND_CL) {
if (ith == 0) {
ggml_cl_mul(src0, src1, dst);
}
return;
}
#endif #endif
const int64_t nr = ggml_nrows(src0); const int64_t nr = ggml_nrows(src0);

View file

@ -1010,8 +1010,12 @@ static void llama_model_load_internal(
} }
} }
#ifdef GGML_USE_CUBLAS #if defined(GGML_USE_CUBLAS)
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CUDA #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CUDA
fprintf(stderr, "%s: using CUDA for GPU acceleration\n", __func__);
#elif defined(GGML_USE_CLBLAST)
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CL
fprintf(stderr, "%s: using OpenCL for GPU acceleration\n", __func__);
#else #else
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
#endif #endif
@ -1063,7 +1067,7 @@ static void llama_model_load_internal(
layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}, backend); layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}, backend);
layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}, backend); layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}, backend);
if (backend == GGML_BACKEND_CUDA) { if (backend == LLAMA_BACKEND_OFFLOAD) {
vram_total += vram_total +=
ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) + ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.attention_norm) +
@ -1093,15 +1097,15 @@ static void llama_model_load_internal(
fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__, fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0); mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
#ifdef GGML_USE_CUBLAS
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
fprintf(stderr, "%s: [cublas] offloading %d layers to GPU\n", __func__, n_gpu); #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
fprintf(stderr, "%s: offloading %d layers to GPU\n", __func__, n_gpu);
if (n_gpu_layers > (int) hparams.n_layer) { if (n_gpu_layers > (int) hparams.n_layer) {
fprintf(stderr, "%s: [cublas] offloading output layer to GPU\n", __func__); fprintf(stderr, "%s: offloading output layer to GPU\n", __func__);
} }
fprintf(stderr, "%s: [cublas] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024); fprintf(stderr, "%s: total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024);
#elif !defined(GGML_USE_CLBLAST) #else
(void) n_gpu_layers; (void) n_gpu_layers;
#endif #endif
} }
@ -1113,7 +1117,7 @@ static void llama_model_load_internal(
ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL); ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
#ifdef GGML_USE_CUBLAS #if defined(GGML_USE_CUBLAS)
{ {
size_t done_size = 0; size_t done_size = 0;
size_t data_size = 0; size_t data_size = 0;
@ -1136,29 +1140,24 @@ static void llama_model_load_internal(
} }
#elif defined(GGML_USE_CLBLAST) #elif defined(GGML_USE_CLBLAST)
{ {
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); size_t done_size = 0;
size_t data_size = 0;
fprintf(stderr, "ggml_opencl: offloading %d layers to GPU\n", n_gpu); for (llama_load_tensor & lt : ml->tensors_map.tensors) {
data_size += lt.size;
size_t vram_total = 0; if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
done_size += lt.size;
for (int i = 0; i < n_gpu; ++i) {
const auto & layer = model.layers[i];
ggml_cl_transform_tensor(layer.wq); vram_total += ggml_nbytes(layer.wq);
ggml_cl_transform_tensor(layer.wk); vram_total += ggml_nbytes(layer.wk);
ggml_cl_transform_tensor(layer.wv); vram_total += ggml_nbytes(layer.wv);
ggml_cl_transform_tensor(layer.wo); vram_total += ggml_nbytes(layer.wo);
ggml_cl_transform_tensor(layer.w1); vram_total += ggml_nbytes(layer.w1);
ggml_cl_transform_tensor(layer.w2); vram_total += ggml_nbytes(layer.w2);
ggml_cl_transform_tensor(layer.w3); vram_total += ggml_nbytes(layer.w3);
} }
if (n_gpu_layers > (int) hparams.n_layer) {
fprintf(stderr, "ggml_opencl: offloading output layer to GPU\n");
ggml_cl_transform_tensor(model.output); vram_total += ggml_nbytes(model.output);
} }
for (llama_load_tensor & lt : ml->tensors_map.tensors) {
fprintf(stderr, "ggml_opencl: total VRAM used: %zu MB\n", vram_total / 1024 / 1024); if (lt.ggml_tensor->backend != GGML_BACKEND_CL) {
continue;
}
if (progress_callback) {
progress_callback((float) done_size / data_size, progress_callback_user_data);
}
ggml_cl_load_data(fname.c_str(), lt.ggml_tensor, lt.shards.at(0).file_off);
done_size += lt.size;
}
} }
#endif #endif