mirror of
https://git.adityakumar.xyz/llama.cpp.git
synced 2024-11-09 15:29:43 +00:00
server: add option to output probabilities for completion (#1962)
* server: add option to output probabilities for completion * server: fix issue when handling probability output for incomplete tokens for multibyte character generation * server: fix llama_sample_top_k order * examples/common.h: put all bool variables in gpt_params together
This commit is contained in:
parent
46088f7231
commit
d7d2e6a0f0
2 changed files with 122 additions and 31 deletions
|
@ -31,7 +31,7 @@ struct gpt_params {
|
|||
int32_t n_gpu_layers = 0; // number of layers to store in VRAM
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
|
||||
bool low_vram = 0; // if true, reduce VRAM usage at the cost of performance
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
|
||||
// sampling parameters
|
||||
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
|
||||
|
@ -59,6 +59,7 @@ struct gpt_params {
|
|||
std::string lora_adapter = ""; // lora adapter path
|
||||
std::string lora_base = ""; // base model path for the lora adapter
|
||||
|
||||
bool low_vram = false; // if true, reduce VRAM usage at the cost of performance
|
||||
bool memory_f16 = true; // use f16 instead of f32 for memory kv
|
||||
bool random_prompt = false; // do not randomize prompt if none provided
|
||||
bool use_color = false; // use color to distinguish generations and inputs
|
||||
|
|
|
@ -26,6 +26,17 @@ struct server_params {
|
|||
int32_t write_timeout = 600;
|
||||
};
|
||||
|
||||
// completion token output with probabilities
|
||||
struct completion_token_output {
|
||||
struct token_prob {
|
||||
llama_token tok;
|
||||
float prob;
|
||||
};
|
||||
|
||||
std::vector<token_prob> probs;
|
||||
llama_token tok;
|
||||
};
|
||||
|
||||
static size_t common_part(const std::vector<llama_token> & a, const std::vector<llama_token> & b) {
|
||||
size_t i;
|
||||
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}
|
||||
|
@ -86,6 +97,40 @@ static void server_log(const char * level, const char * function, int line,
|
|||
fflush(stdout);
|
||||
}
|
||||
|
||||
// format incomplete utf-8 multibyte character for output
|
||||
static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) {
|
||||
std::string out = token == -1 ? "" : llama_token_to_str(ctx, token);
|
||||
// if first bit is 1, meaning it's a partial character
|
||||
if (out.size() > 0 && (out[0] & 0x80) == 0x80) {
|
||||
std::stringstream ss;
|
||||
ss<< std::hex << (out[0] & 0xff);
|
||||
std::string res ( ss.str() );
|
||||
out = "byte: \\x" + res;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
// convert a vector of completion_token_output to json
|
||||
static json probs_vector_to_json(const llama_context * ctx, const std::vector<completion_token_output> probs) {
|
||||
json out = json::array();
|
||||
for (const auto & prob : probs) {
|
||||
json probs_for_token = json::array();
|
||||
for (const auto & p : prob.probs) {
|
||||
std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
|
||||
probs_for_token.push_back(json {
|
||||
{ "tok_str", tok_str },
|
||||
{ "prob", p.prob },
|
||||
});
|
||||
}
|
||||
std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
|
||||
out.push_back(json {
|
||||
{"content", tok_str},
|
||||
{"probs", probs_for_token},
|
||||
});
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
static bool server_verbose = false;
|
||||
|
||||
#if SERVER_VERBOSE != 1
|
||||
|
@ -107,6 +152,7 @@ struct llama_server_context {
|
|||
bool stream = false;
|
||||
bool has_next_token = false;
|
||||
std::string generated_text;
|
||||
std::vector<completion_token_output> generated_token_probs;
|
||||
|
||||
size_t num_tokens_predicted = 0;
|
||||
size_t n_past = 0;
|
||||
|
@ -142,6 +188,7 @@ struct llama_server_context {
|
|||
num_tokens_predicted = 0;
|
||||
generated_text = "";
|
||||
generated_text.reserve(params.n_ctx);
|
||||
generated_token_probs.clear();
|
||||
truncated = false;
|
||||
stopped_eos = false;
|
||||
stopped_word = false;
|
||||
|
@ -221,8 +268,9 @@ struct llama_server_context {
|
|||
llama_set_rng_seed(ctx, params.seed);
|
||||
}
|
||||
|
||||
llama_token nextToken() {
|
||||
llama_token result = -1;
|
||||
completion_token_output nextToken() {
|
||||
completion_token_output result;
|
||||
result.tok = -1;
|
||||
|
||||
if (embd.size() >= (size_t)params.n_ctx) {
|
||||
// Reset context
|
||||
|
@ -261,7 +309,8 @@ struct llama_server_context {
|
|||
|
||||
if (params.n_predict == 0) {
|
||||
has_next_token = false;
|
||||
return llama_token_eos();
|
||||
result.tok = llama_token_eos();
|
||||
return result;
|
||||
}
|
||||
|
||||
// out of user input, sample next token
|
||||
|
@ -278,7 +327,7 @@ struct llama_server_context {
|
|||
const float mirostat_tau = params.mirostat_tau;
|
||||
const float mirostat_eta = params.mirostat_eta;
|
||||
const bool penalize_nl = params.penalize_nl;
|
||||
llama_token id = 0;
|
||||
const int32_t n_probs = params.n_probs;
|
||||
|
||||
{
|
||||
auto * logits = llama_get_logits(ctx);
|
||||
|
@ -312,35 +361,42 @@ struct llama_server_context {
|
|||
|
||||
if (temp <= 0) {
|
||||
// Greedy sampling
|
||||
id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
result.tok = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
if (n_probs > 0) {
|
||||
llama_sample_softmax(ctx, &candidates_p);
|
||||
}
|
||||
} else {
|
||||
if (mirostat == 1) {
|
||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||
const int mirostat_m = 100;
|
||||
llama_sample_temperature(ctx, &candidates_p, temp);
|
||||
id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
|
||||
result.tok = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
|
||||
} else if (mirostat == 2) {
|
||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||
llama_sample_temperature(ctx, &candidates_p, temp);
|
||||
id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
||||
result.tok = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
||||
} else {
|
||||
// Temperature sampling
|
||||
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
|
||||
llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
|
||||
llama_sample_typical(ctx, &candidates_p, typical_p, 1);
|
||||
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
|
||||
size_t min_keep = std::max(1, n_probs);
|
||||
llama_sample_top_k(ctx, &candidates_p, top_k, min_keep);
|
||||
llama_sample_tail_free(ctx, &candidates_p, tfs_z, min_keep);
|
||||
llama_sample_typical(ctx, &candidates_p, typical_p, min_keep);
|
||||
llama_sample_top_p(ctx, &candidates_p, top_p, min_keep);
|
||||
llama_sample_temperature(ctx, &candidates_p, temp);
|
||||
id = llama_sample_token(ctx, &candidates_p);
|
||||
result.tok = llama_sample_token(ctx, &candidates_p);
|
||||
}
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < std::min(candidates_p.size, (size_t) n_probs); ++i) {
|
||||
result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p});
|
||||
}
|
||||
last_n_tokens.erase(last_n_tokens.begin());
|
||||
last_n_tokens.push_back(id);
|
||||
last_n_tokens.push_back(result.tok);
|
||||
num_tokens_predicted++;
|
||||
}
|
||||
|
||||
// add it to the context
|
||||
embd.push_back(id);
|
||||
result = id;
|
||||
embd.push_back(result.tok);
|
||||
// decrement remaining sampling budget
|
||||
--n_remain;
|
||||
|
||||
|
@ -382,12 +438,16 @@ struct llama_server_context {
|
|||
return stop_pos;
|
||||
}
|
||||
|
||||
std::string doCompletion() {
|
||||
const llama_token token = nextToken();
|
||||
completion_token_output doCompletion() {
|
||||
const completion_token_output token_with_probs = nextToken();
|
||||
|
||||
const std::string token_text = token == -1 ? "" : llama_token_to_str(ctx, token);
|
||||
const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(ctx, token_with_probs.tok);
|
||||
generated_text += token_text;
|
||||
|
||||
if (params.n_probs > 0) {
|
||||
generated_token_probs.push_back(token_with_probs);
|
||||
}
|
||||
|
||||
if (multibyte_pending > 0) {
|
||||
multibyte_pending -= token_text.size();
|
||||
} else if (token_text.size() == 1) {
|
||||
|
@ -416,8 +476,8 @@ struct llama_server_context {
|
|||
}
|
||||
|
||||
LOG_VERBOSE("next token", {
|
||||
{ "token", token },
|
||||
{ "token_text", llama_token_to_str(ctx, token) },
|
||||
{ "token", token_with_probs.tok },
|
||||
{ "token_text", tokens_to_output_formatted_string(ctx, token_with_probs.tok) },
|
||||
{ "has_next_token", has_next_token },
|
||||
{ "n_remain", n_remain },
|
||||
{ "num_tokens_predicted", num_tokens_predicted },
|
||||
|
@ -427,7 +487,7 @@ struct llama_server_context {
|
|||
{ "stopping_word", stopping_word },
|
||||
});
|
||||
|
||||
return token_text;
|
||||
return token_with_probs;
|
||||
}
|
||||
|
||||
std::vector<float> getEmbedding() {
|
||||
|
@ -669,6 +729,7 @@ static json format_generation_settings(llama_server_context & llama) {
|
|||
{ "ignore_eos", ignore_eos },
|
||||
{ "stream", llama.stream },
|
||||
{ "logit_bias", llama.params.logit_bias },
|
||||
{ "n_probs", llama.params.n_probs },
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -678,8 +739,9 @@ static json format_embedding_response(llama_server_context & llama) {
|
|||
};
|
||||
}
|
||||
|
||||
static json format_final_response(llama_server_context & llama, const std::string & content) {
|
||||
return json {
|
||||
static json format_final_response(llama_server_context & llama, const std::string & content, const std::vector<completion_token_output> & probs) {
|
||||
|
||||
json res = json {
|
||||
{ "content", content },
|
||||
{ "stop", true },
|
||||
{ "model", llama.params.model_alias },
|
||||
|
@ -692,13 +754,25 @@ static json format_final_response(llama_server_context & llama, const std::strin
|
|||
{ "stopped_limit", llama.stopped_limit },
|
||||
{ "stopping_word", llama.stopping_word },
|
||||
};
|
||||
|
||||
if (llama.params.n_probs > 0) {
|
||||
res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
static json format_partial_response(const std::string & content) {
|
||||
return json {
|
||||
static json format_partial_response(llama_server_context & llama, const std::string & content, const std::vector<completion_token_output> & probs) {
|
||||
json res = json {
|
||||
{ "content", content },
|
||||
{ "stop", false },
|
||||
};
|
||||
|
||||
if (llama.params.n_probs > 0) {
|
||||
res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
static json format_tokenizer_response(const std::vector<llama_token> & tokens) {
|
||||
|
@ -728,6 +802,7 @@ static void parse_options_completion(const json & body, llama_server_context & l
|
|||
llama.params.n_keep = body.value("n_keep", default_params.n_keep);
|
||||
llama.params.seed = body.value("seed", default_params.seed);
|
||||
llama.params.prompt = body.value("prompt", default_params.prompt);
|
||||
llama.params.n_probs = body.value("n_probs", default_params.n_probs);
|
||||
|
||||
llama.params.logit_bias.clear();
|
||||
if (body.value("ignore_eos", false)) {
|
||||
|
@ -830,7 +905,8 @@ int main(int argc, char ** argv) {
|
|||
size_t stop_pos = std::string::npos;
|
||||
|
||||
while (llama.has_next_token) {
|
||||
const std::string token_text = llama.doCompletion();
|
||||
const completion_token_output token_with_probs = llama.doCompletion();
|
||||
const std::string token_text = llama_token_to_str(llama.ctx, token_with_probs.tok);
|
||||
|
||||
stop_pos = llama.findStoppingStrings(llama.generated_text,
|
||||
token_text.size(), STOP_FULL);
|
||||
|
@ -844,7 +920,7 @@ int main(int argc, char ** argv) {
|
|||
llama.generated_text.end());
|
||||
}
|
||||
|
||||
const json data = format_final_response(llama, llama.generated_text);
|
||||
const json data = format_final_response(llama, llama.generated_text, llama.generated_token_probs);
|
||||
|
||||
llama_print_timings(llama.ctx);
|
||||
|
||||
|
@ -853,9 +929,11 @@ int main(int argc, char ** argv) {
|
|||
} else {
|
||||
const auto chunked_content_provider = [&](size_t, DataSink & sink) {
|
||||
size_t sent_count = 0;
|
||||
size_t sent_token_probs_index = 0;
|
||||
|
||||
while (llama.has_next_token) {
|
||||
const std::string token_text = llama.doCompletion();
|
||||
const completion_token_output token_with_probs = llama.doCompletion();
|
||||
const std::string token_text = llama_token_to_str(llama.ctx, token_with_probs.tok);
|
||||
if (llama.multibyte_pending > 0) {
|
||||
continue;
|
||||
}
|
||||
|
@ -878,10 +956,22 @@ int main(int argc, char ** argv) {
|
|||
const std::string to_send = llama.generated_text.substr(pos, stop_pos);
|
||||
sent_count += to_send.size();
|
||||
|
||||
std::vector<completion_token_output> probs_output = {};
|
||||
|
||||
if (llama.params.n_probs > 0) {
|
||||
const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
|
||||
size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
|
||||
size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
|
||||
if (probs_pos < probs_stop_pos) {
|
||||
probs_output = std::vector<completion_token_output>(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos);
|
||||
}
|
||||
sent_token_probs_index = probs_stop_pos;
|
||||
}
|
||||
|
||||
const json data = llama.has_next_token
|
||||
? format_partial_response(to_send)
|
||||
? format_partial_response(llama, to_send, probs_output)
|
||||
// Generation is done, send extra information.
|
||||
: format_final_response(llama, to_send);
|
||||
: format_final_response(llama, to_send, llama.generated_token_probs);
|
||||
|
||||
const std::string str =
|
||||
"data: " +
|
||||
|
|
Loading…
Reference in a new issue