diff --git a/ggml.c b/ggml.c index 6a36bc9..4ea7159 100644 --- a/ggml.c +++ b/ggml.c @@ -2529,8 +2529,9 @@ struct ggml_context { void * mem_buffer; bool mem_buffer_owned; bool mem_buffer_mlocked; + bool no_alloc; - int n_objects; + int n_objects; struct ggml_object * objects_begin; struct ggml_object * objects_end; @@ -2815,6 +2816,7 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size), /*.mem_buffer_owned =*/ params.mem_buffer ? false : true, /*.mem_buffer_mlocked =*/ false, + /*.no_alloc =*/ params.no_alloc, /*.n_objects =*/ 0, /*.objects_begin =*/ NULL, /*.objects_end =*/ NULL, @@ -2930,7 +2932,7 @@ struct ggml_tensor * ggml_new_tensor_impl( size_t size_needed = 0; - if (data == NULL) { + if (data == NULL && !ctx->no_alloc) { size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]); for (int i = 1; i < n_dims; i++) { size_needed *= ne[i]; @@ -3014,7 +3016,7 @@ struct ggml_tensor * ggml_new_tensor_impl( /*.perf_runs =*/ 0, /*.perf_cycles =*/ 0, /*.perf_time_us =*/ 0, - /*.data =*/ data == NULL ? (void *)(result + 1) : data, + /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data, /*.pad =*/ { 0 }, }; @@ -10277,6 +10279,7 @@ enum ggml_opt_result ggml_opt( struct ggml_init_params params_ctx = { .mem_size = 16*1024*1024, .mem_buffer = NULL, + .no_alloc = false, }; ctx = ggml_init(params_ctx); diff --git a/ggml.h b/ggml.h index 335230f..058dfe2 100644 --- a/ggml.h +++ b/ggml.h @@ -316,6 +316,7 @@ struct ggml_init_params { // memory pool size_t mem_size; // bytes void * mem_buffer; // if NULL, memory will be allocated internally + bool no_alloc; // don't allocate memory for the tensor data }; void ggml_time_init(void); // call this once at the beginning of the program diff --git a/llama.cpp b/llama.cpp index e4998ef..d7126f4 100644 --- a/llama.cpp +++ b/llama.cpp @@ -12,6 +12,13 @@ #include #include +// headers for POSIX mmap +#if defined (__unix__) || defined (__APPLE__) +# include +# include +# include +#endif + #define LLAMA_USE_SCRATCH #define LLAMA_MAX_SCRATCH_BUFFERS 16 @@ -246,6 +253,7 @@ static bool kv_cache_init( struct ggml_init_params params; params.mem_size = cache.buf.size(); params.mem_buffer = cache.buf.data(); + params.no_alloc = false; cache.ctx = ggml_init(params); @@ -288,6 +296,26 @@ struct llama_context_params llama_context_default_params() { // model loading // +void * mmap_file(const char* fname) { +#if defined(MAP_FAILED) + // POSIX mmap + int fd = open(fname, O_RDONLY); + size_t len = lseek(fd, 0, SEEK_END); + void * mm_addr = mmap(NULL, len, PROT_READ, MAP_SHARED, fd, 0); + if (mm_addr == MAP_FAILED) { + perror("mmap failed"); + mm_addr = NULL; + } + close(fd); + return mm_addr; +#else + // TODO: windows support + (void)(fname); // suppress warnings + return NULL; +#endif +} + + static bool llama_model_load( const std::string & fname, llama_context & lctx, @@ -303,6 +331,7 @@ static bool llama_model_load( lctx.t_start_us = t_start_us; + // TODO: this could probably be smaller when using mmap std::vector f_buf(1024*1024); auto & model = lctx.model; @@ -449,39 +478,49 @@ static bool llama_model_load( } } + bool use_mmap = (n_parts == 1); + + // try to memory map the model file + void* mm_addr = NULL; + if (use_mmap) { + mm_addr = mmap_file(fname.c_str()); + if (mm_addr == NULL) { + use_mmap = false; + } + } + + + auto & ctx = model.ctx; size_t ctx_size = 0; - { const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; - const int n_ctx = hparams.n_ctx; const int n_vocab = hparams.n_vocab; - ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // tok_embeddings + if (!use_mmap) { + ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // tok_embeddings - ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm + ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm - ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // output + ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // output - ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm + ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm - ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wq - ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wk - ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wv - ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wo + ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wq + ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wk + ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wv + ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wo - ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ffn_norm + ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ffn_norm - ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w1 - ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w2 - ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w3 - - ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_k - ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_v + ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w1 + ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w2 + ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w3 + } ctx_size += (5 + 10*n_layer)*256; // object overhead @@ -514,6 +553,7 @@ static bool llama_model_load( struct ggml_init_params params = { /*.mem_size =*/ lctx.model.buf.size(), /*.mem_buffer =*/ lctx.model.buf.data(), + /*.no_alloc =*/ use_mmap, }; model.ctx = ggml_init(params); @@ -595,7 +635,7 @@ static bool llama_model_load( fname_part += "." + std::to_string(i); } - fprintf(stderr, "%s: loading model part %d/%d from '%s'\n", __func__, i+1, n_parts, fname_part.c_str()); + fprintf(stderr, "%s: loading model part %d/%d from '%s'%s\n", __func__, i+1, n_parts, fname_part.c_str(), use_mmap ? " (memory mapped)" : ""); fin = std::ifstream(fname_part, std::ios::binary); fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size()); @@ -736,7 +776,14 @@ static bool llama_model_load( } if (part_id == 0) { - fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); + if (mm_addr) { + off_t offset = fin.tellg(); + tensor->data = (char *) mm_addr + offset; + fin.seekg(ggml_nbytes(tensor), std::ios::cur); + } + else { + fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); + } } else { fin.seekg(ggml_nbytes(tensor), std::ios::cur); } @@ -849,6 +896,7 @@ static bool llama_eval_internal( struct ggml_init_params params = { /*.mem_size =*/ buf_compute.size(), /*.mem_buffer =*/ buf_compute.data(), + /*.no_alloc =*/ false, }; struct ggml_context * ctx0 = ggml_init(params);