mirror of
https://git.adityakumar.xyz/llama.cpp.git
synced 2024-11-08 23:19:43 +00:00
Possible solution to allow K-quants on models with n_vocab!=32000 (#2148)
* This allows LLAMA models that were previously incompatible with K quants to function mostly as normal. This happens when a model has a vocab != 32000, e.g 32001 which means it's not divisible by 256 or 64. Since the problematic dimensions only apply for `tok_embeddings.weight` and `output.weight` (dimentions 4096 x n_vocab), we can simply quantize these layers to Q8_0 whereas the majority of the hidden layers are still K-quanted since they have compatible dimensions. * Fix indentation Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * As an alternative, to avoid failing on Metal due to lack of Q8_0 support, instead quantize tok_embeddings.weight to Q4_0 and retain output.weight as F16. This results in a net gain of about 55mb for a 7B model compared to previous approach, but should minimize adverse impact to model quality. --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
5656d10599
commit
bbef28218f
1 changed files with 14 additions and 4 deletions
18
llama.cpp
18
llama.cpp
|
@ -2454,15 +2454,14 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||||
} else {
|
} else {
|
||||||
new_type = quantized_type;
|
new_type = quantized_type;
|
||||||
#ifdef GGML_USE_K_QUANTS
|
#ifdef GGML_USE_K_QUANTS
|
||||||
|
bool convert_incompatible_tensor = false;
|
||||||
if (quantized_type == GGML_TYPE_Q2_K || quantized_type == GGML_TYPE_Q3_K || quantized_type == GGML_TYPE_Q4_K ||
|
if (quantized_type == GGML_TYPE_Q2_K || quantized_type == GGML_TYPE_Q3_K || quantized_type == GGML_TYPE_Q4_K ||
|
||||||
quantized_type == GGML_TYPE_Q5_K || quantized_type == GGML_TYPE_Q6_K) {
|
quantized_type == GGML_TYPE_Q5_K || quantized_type == GGML_TYPE_Q6_K) {
|
||||||
int nx = tensor.ne.at(0);
|
int nx = tensor.ne.at(0);
|
||||||
int ny = tensor.ne.at(1);
|
int ny = tensor.ne.at(1);
|
||||||
if (nx % QK_K != 0 || ny % QK_K != 0) {
|
if (nx % QK_K != 0 || ny % QK_K != 0) {
|
||||||
fprintf(stderr, "\n\n========================= Tensor sizes %d x %d are not divisible by %d\n",nx,ny,QK_K);
|
fprintf(stderr, "\n\nTensor sizes %d x %d are not divisible by %d, required for k-quants.\n",nx,ny,QK_K);
|
||||||
fprintf(stderr, "This is required to be able to use k-quants for now!\n");
|
convert_incompatible_tensor = true;
|
||||||
fprintf(stderr, "========================================================================================\n\n");
|
|
||||||
throw std::runtime_error("Unsupported tensor size encountered\n");
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (tensor.name == "output.weight") {
|
if (tensor.name == "output.weight") {
|
||||||
|
@ -2490,6 +2489,17 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
|
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
|
||||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||||
}
|
}
|
||||||
|
if (convert_incompatible_tensor) {
|
||||||
|
if (tensor.name == "output.weight") {
|
||||||
|
new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
|
||||||
|
fprintf(stderr, "F16 will be used for this tensor instead.\n");
|
||||||
|
} else if (tensor.name == "tok_embeddings.weight") {
|
||||||
|
new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing.
|
||||||
|
fprintf(stderr, "Q4_0 will be used for this tensor instead.\n");
|
||||||
|
} else {
|
||||||
|
throw std::runtime_error("Unsupported tensor size encountered\n");
|
||||||
|
}
|
||||||
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
float * f32_data;
|
float * f32_data;
|
||||||
|
|
Loading…
Reference in a new issue