mirror of
https://git.adityakumar.xyz/llama.cpp.git
synced 2024-11-09 15:29:43 +00:00
cuBLAS: non-contiguous tensor support (#1215)
* Cuda: non-contiguous tensor support * remove extra stuff * rename * fix error * more fixes, now OpenBLAS and CLBlast build too * now then?
This commit is contained in:
parent
36d19a603b
commit
b1ee8f59b4
3 changed files with 44 additions and 11 deletions
28
ggml-cuda.cu
28
ggml-cuda.cu
|
@ -302,3 +302,31 @@ void ggml_init_cublas(void) {
|
||||||
// CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL));
|
// CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) {
|
||||||
|
const uint64_t ne0 = src->ne[0];
|
||||||
|
const uint64_t ne1 = src->ne[1];
|
||||||
|
const uint64_t nb0 = src->nb[0];
|
||||||
|
const uint64_t nb1 = src->nb[1];
|
||||||
|
const uint64_t nb2 = src->nb[2];
|
||||||
|
const uint64_t nb3 = src->nb[3];
|
||||||
|
const enum ggml_type type = src->type;
|
||||||
|
const size_t ts = ggml_type_size(type);
|
||||||
|
const size_t bs = ggml_blck_size(type);
|
||||||
|
|
||||||
|
const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
|
||||||
|
if (nb0 == ts && nb1 == ts*ne0/bs) {
|
||||||
|
return cudaMemcpyAsync(dst, x, ne1*nb1, cudaMemcpyHostToDevice, stream);
|
||||||
|
} else if (nb0 == ts) {
|
||||||
|
return cudaMemcpy2DAsync(dst, ts*ne0/bs, x, nb1, ts*ne0/bs, ne1, cudaMemcpyHostToDevice, stream);
|
||||||
|
} else {
|
||||||
|
for (uint64_t i1 = 0; i1 < ne1; i1++) {
|
||||||
|
const void * rx = (const void *) ((const char *) x + i1*nb1);
|
||||||
|
void * rd = (void *) ((char *) dst + i1*ts*ne0/bs);
|
||||||
|
// pretend the row is a matrix with cols=1
|
||||||
|
cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyHostToDevice, stream);
|
||||||
|
if (r != cudaSuccess) return r;
|
||||||
|
}
|
||||||
|
return cudaSuccess;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
|
@ -1,5 +1,6 @@
|
||||||
#include <cublas_v2.h>
|
#include <cublas_v2.h>
|
||||||
#include <cuda_runtime.h>
|
#include <cuda_runtime.h>
|
||||||
|
#include "ggml.h"
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
extern "C" {
|
extern "C" {
|
||||||
|
@ -38,6 +39,8 @@ void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t st
|
||||||
void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream);
|
void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream);
|
||||||
void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream);
|
void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream);
|
||||||
|
|
||||||
|
cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream);
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
24
ggml.c
24
ggml.c
|
@ -7930,8 +7930,12 @@ static bool ggml_compute_forward_mul_mat_use_blas(
|
||||||
const int64_t ne1 = dst->ne[1];
|
const int64_t ne1 = dst->ne[1];
|
||||||
|
|
||||||
// TODO: find the optimal values for these
|
// TODO: find the optimal values for these
|
||||||
if (ggml_is_contiguous(src0) &&
|
if (
|
||||||
ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
|
#if !defined(GGML_USE_CUBLAS)
|
||||||
|
ggml_is_contiguous(src0) &&
|
||||||
|
ggml_is_contiguous(src1) &&
|
||||||
|
#endif
|
||||||
|
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
|
||||||
|
|
||||||
/*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
|
/*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
|
||||||
return true;
|
return true;
|
||||||
|
@ -8041,15 +8045,16 @@ static void ggml_compute_forward_mul_mat_f32(
|
||||||
|
|
||||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||||
|
#if !defined(GGML_USE_CUBLAS)
|
||||||
const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
|
const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
|
||||||
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
|
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
|
||||||
|
#endif
|
||||||
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
||||||
|
|
||||||
#if defined(GGML_USE_CUBLAS)
|
#if defined(GGML_USE_CUBLAS)
|
||||||
// copy data to device
|
// copy data to device
|
||||||
CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
|
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream));
|
||||||
CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
|
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream));
|
||||||
|
|
||||||
// compute
|
// compute
|
||||||
CUBLAS_CHECK(
|
CUBLAS_CHECK(
|
||||||
|
@ -8269,13 +8274,12 @@ static void ggml_compute_forward_mul_mat_f16_f32(
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if defined(GGML_USE_CUBLAS)
|
#if defined(GGML_USE_CUBLAS)
|
||||||
const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
|
|
||||||
const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
|
const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
|
||||||
|
|
||||||
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
||||||
|
|
||||||
// copy data to device
|
// copy data to device
|
||||||
CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
|
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream));
|
||||||
CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
|
CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
|
||||||
|
|
||||||
// compute
|
// compute
|
||||||
|
@ -8539,9 +8543,7 @@ static void ggml_compute_forward_mul_mat_q_f32(
|
||||||
|
|
||||||
#if defined(GGML_USE_CUBLAS)
|
#if defined(GGML_USE_CUBLAS)
|
||||||
// copy and dequantize on device
|
// copy and dequantize on device
|
||||||
CUDA_CHECK(
|
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Q, src0, i03, i02, g_cudaStream));
|
||||||
cudaMemcpyAsync(d_Q, (char *) src0->data + i03*nb03 + i02*nb02,
|
|
||||||
GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], cudaMemcpyHostToDevice, g_cudaStream));
|
|
||||||
|
|
||||||
dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, g_cudaStream);
|
dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, g_cudaStream);
|
||||||
CUDA_CHECK(cudaGetLastError());
|
CUDA_CHECK(cudaGetLastError());
|
||||||
|
@ -8561,7 +8563,7 @@ static void ggml_compute_forward_mul_mat_q_f32(
|
||||||
|
|
||||||
#if defined(GGML_USE_CUBLAS)
|
#if defined(GGML_USE_CUBLAS)
|
||||||
// copy data to device
|
// copy data to device
|
||||||
CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
|
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream));
|
||||||
|
|
||||||
// compute
|
// compute
|
||||||
CUBLAS_CHECK(
|
CUBLAS_CHECK(
|
||||||
|
|
Loading…
Reference in a new issue