cuda : loading models directly into VRAM, norm calculation on GPU, broadcasting for ggml_mul (#1483)

* Broadcasting for ggml_mul

* CUDA kernel for ggml_mul, norms in VRAM

* GPU weights not in RAM, direct loading with cuFile

* fixup! GPU weights not in RAM, direct loading with cuFile

* fixup! GPU weights not in RAM, direct loading with cuFile

* define default model path once, sync path with readme (#1366)

* ~7% faster Q5_1 AVX2 code (#1477)

* convert.py: Support models which are stored in a single pytorch_model.bin (#1469)

* Support models in a single pytorch_model.bin

* Remove spurious line with typo

* benchmark-matmul: Print the average of the test results (#1490)

* Remove unused n_parts parameter (#1509)

* Fixes #1511 lambda issue for w64devkit (mingw) (#1513)

* Fix for w64devkit and mingw

* make kv_f16 the default for api users (#1517)

* minor : fix compile warnings

* readme : adds WizardLM to the list of supported models (#1485)

* main : make reverse prompt option act as a stop token in non-interactive mode (#1032)

* Make reverse prompt option act as a stop token in non-interactive scenarios

* Making requested review changes

* Update gpt_params_parse and fix a merge error

* Revert "Update gpt_params_parse and fix a merge error"

This reverts commit 2bb2ff1748513591ad45b175a75ed1d8089d84c8.

* Update gpt_params_parse and fix a merge error take 2

* examples : add persistent chat (#1495)

* examples : add persistent chat

* examples : fix whitespace

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* tests : add missing header

* ggml : use F16 instead of F32 in Q4_0, Q4_1, Q8_0 (#1508)

* ggml : use F16 instead of F32 in Q4_0, Q4_1 and Q8_0

* llama : bump LLAMA_FILE_VERSION to 3

* cuda : update Q4 and Q8 dequantize kernels

* ggml : fix AVX dot products

* readme : update performance table + hot topics

* ggml : fix scalar implementation of Q4_1 dot

* llama : fix compile warnings in llama_set_state_data()

* llama : fix name shadowing and C4146 (#1526)

* Fix name shadowing and C4146

* Fix if macros not using defined when required

* Update llama-util.h

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>

* Update llama-util.h

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>

* Code style

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Fix for mingw (#1462)

* llama : add llama_init_backend() API (close #1527)

* feature : add blis and other BLAS implementation support (#1502)

* feature: add blis support

* feature: allow all BLA_VENDOR to be assigned in cmake arguments. align with whisper.cpp pr 927

* fix: version detection for BLA_SIZEOF_INTEGER, recover min version of cmake

* Fix typo in INTEGER

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Revert "feature : add blis and other BLAS implementation support (#1502)"

This reverts commit 07e9ace0f9.

* GPU weights not in RAM, direct loading with cuFile

* llama : code style fixes + progress print fix

* ggml : ggml_mul better broadcast support

* cmake : workarounds for cufile when CMake version < 3.25

* gg rebase fixup

* Loop in llama.cpp, fixed progress callback

* Attempt clang-tidy fix

* llama : fix vram size computation

* Add forgotten fclose()

---------

Co-authored-by: András Salamon <ott2@users.noreply.github.com>
Co-authored-by: Ilya Kurdyukov <59548320+ilyakurdyukov@users.noreply.github.com>
Co-authored-by: Tom Jobbins <784313+TheBloke@users.noreply.github.com>
Co-authored-by: rankaiyx <rankaiyx@rankaiyx.com>
Co-authored-by: Stephan Walter <stephan@walter.name>
Co-authored-by: DannyDaemonic <DannyDaemonic@gmail.com>
Co-authored-by: Erik Scholz <Green-Sky@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: David Kennedy <dakennedyd@gmail.com>
Co-authored-by: Jason McCartney <jmac@theroot.org>
Co-authored-by: Evan Jones <evan.q.jones@gmail.com>
Co-authored-by: Maxime <672982+maximegmd@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Zenix <zenixls2@gmail.com>
This commit is contained in:
Johannes Gäßler 2023-05-20 14:19:28 +02:00 committed by GitHub
parent ea600071cb
commit affc76edfd
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 304 additions and 116 deletions

View file

@ -83,9 +83,19 @@ typedef struct {
} block_q8_0; } block_q8_0;
static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding"); static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
#define CUDA_MUL_BLOCK_SIZE 256
#define CUDA_DEQUANTIZE_BLOCK_SIZE 256 #define CUDA_DEQUANTIZE_BLOCK_SIZE 256
#define CUDA_DMMV_BLOCK_SIZE 32 // dmmv = dequantize_mul_mat_vec #define CUDA_DMMV_BLOCK_SIZE 32 // dmmv = dequantize_mul_mat_vec
static __global__ void mul_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= kx) {
return;
}
dst[i] = x[i] * y[i%ky];
}
static __device__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){ static __device__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
const block_q4_0 * x = (const block_q4_0 *) vx; const block_q4_0 * x = (const block_q4_0 *) vx;
@ -228,6 +238,11 @@ static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y,
} }
} }
static void mul_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
const int num_blocks = (kx + CUDA_MUL_BLOCK_SIZE - 1) / CUDA_MUL_BLOCK_SIZE;
mul_f32<<<num_blocks, CUDA_MUL_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
}
static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
dequantize_block<QK4_0, QR4_0, dequantize_q4_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k); dequantize_block<QK4_0, QR4_0, dequantize_q4_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
@ -467,6 +482,67 @@ static cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor
} }
} }
static void ggml_cuda_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src1->backend == GGML_BACKEND_CUDA);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne03 = src0->ne[2];
const int64_t ne0 = ne00 * ne01 * ne02 * ne03;
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int64_t ne12 = src1->ne[2];
const int64_t ne13 = src1->ne[3];
const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3];
size_t x_size, d_size;
float * d_X = (float *) ggml_cuda_pool_malloc(ne0 * sizeof(float), &x_size); // src0
float * d_Y = (float *) src1->data; // src1 is already on device, broadcasted.
float * d_D = (float *) ggml_cuda_pool_malloc(ne0 * sizeof(float), &d_size); // dst
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
const int i0 = i03*ne02 + i02;
float * c_X2 = d_X + i0*ne01*ne00;
float * c_D2 = d_D + i0*ne01*ne00;
cudaStream_t cudaStream = g_cudaStreams[i0 % GGML_CUDA_MAX_STREAMS];
cudaStream_t cudaStream2 = g_cudaStreams2[i0 % GGML_CUDA_MAX_STREAMS];
cudaEvent_t cudaEvent = g_cudaEvents[i0 % GGML_CUDA_MAX_EVENTS];
// copy src0 to device
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X2, src0, i03, i02, cudaStream2));
CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));
// wait for data
CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));
for (int64_t i01 = 0; i01 < ne01; i01++) {
const int64_t i13 = i03%ne13;
const int64_t i12 = i02%ne12;
const int64_t i11 = i01%ne11;
const int i1 = i13*ne12*ne11 + i12*ne11 + i11;
float * c_X1 = c_X2 + i01*ne00;
float * c_Y = d_Y + i1*ne10;
float * c_D1 = c_D2 + i01*ne00;
// compute
mul_f32_cuda(c_X1, c_Y, c_D1, ne00, ne10, cudaStream);
CUDA_CHECK(cudaGetLastError());
}
// copy dst to host
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
CUDA_CHECK(cudaMemcpyAsync(d, c_D2, sizeof(float)*ne00*ne01, cudaMemcpyDeviceToHost, cudaStream));
}
}
CUDA_CHECK(cudaDeviceSynchronize());
ggml_cuda_pool_free(d_X, x_size);
ggml_cuda_pool_free(d_D, d_size);
}
static void ggml_cuda_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cuda_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const int64_t ne00 = src0->ne[0]; const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1]; const int64_t ne01 = src0->ne[1];
@ -724,6 +800,11 @@ static void ggml_cuda_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor
ggml_cuda_pool_free(d_Q, q_size); ggml_cuda_pool_free(d_Q, q_size);
} }
void ggml_cuda_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
ggml_cuda_mul_f32(src0, src1, dst);
}
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
const int64_t ne10 = src1->ne[0]; const int64_t ne10 = src1->ne[0];
@ -797,14 +878,48 @@ void ggml_cuda_transform_tensor(ggml_tensor * tensor) {
const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type); const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type);
size_t q_size; size_t q_size;
char * d_Q = (char *) ggml_cuda_pool_malloc(q_sz, &q_size); char * dst = (char *) ggml_cuda_pool_malloc(q_sz, &q_size);
cudaStream_t cudaStream2 = g_cudaStreams2[0]; cudaStream_t cudaStream2 = g_cudaStreams2[0];
// copy tensor to device // copy tensor to device
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Q, tensor, 0, 0, cudaStream2)); for (int64_t i3 = 0; i3 < ne3; i3++) {
CUDA_CHECK(cudaDeviceSynchronize()); for (int64_t i2 = 0; i2 < ne2; i2++) {
int i = i3*ne2 + i2;
CUDA_CHECK(ggml_cuda_h2d_tensor_2d(dst + i*ne0*ne1, tensor, i3, i2, cudaStream2));
}
}
tensor->data = d_Q; tensor->data = dst;
tensor->backend = GGML_BACKEND_CUDA; tensor->backend = GGML_BACKEND_CUDA;
} }
void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) {
FILE * fp = fopen(fname, "rb");
const size_t size = ggml_nbytes(tensor);
void * buf;
CUDA_CHECK(cudaMalloc(&buf, size));
void * buf_host = malloc(size);
#ifdef _WIN32
int ret = _fseeki64(fp, (__int64) offset, SEEK_SET);
#else
int ret = fseek(fp, (long) offset, SEEK_SET);
#endif
GGML_ASSERT(ret == 0); // same
size_t ret2 = fread(buf_host, size, 1, fp);
if (ret2 != 1) {
fprintf(stderr, "unexpectedly reached end of file");
exit(1);
}
cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice);
cudaDeviceSynchronize();
tensor->data = buf;
free(buf_host);
fclose(fp);
}

View file

@ -6,6 +6,7 @@ extern "C" {
void ggml_init_cublas(void); void ggml_init_cublas(void);
void ggml_cuda_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize); void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
@ -15,6 +16,7 @@ void * ggml_cuda_host_malloc(size_t size);
void ggml_cuda_host_free(void * ptr); void ggml_cuda_host_free(void * ptr);
void ggml_cuda_transform_tensor(struct ggml_tensor * tensor); void ggml_cuda_transform_tensor(struct ggml_tensor * tensor);
void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensors, size_t offset);
#ifdef __cplusplus #ifdef __cplusplus
} }

90
ggml.c
View file

@ -3776,6 +3776,12 @@ static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct g
(t1->ne[3]%t0->ne[3] == 0); (t1->ne[3]%t0->ne[3] == 0);
} }
static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
}
static inline int ggml_up32(int n) { static inline int ggml_up32(int n) {
return (n + 31) & ~31; return (n + 31) & ~31;
} }
@ -4658,11 +4664,15 @@ struct ggml_tensor * ggml_mul_impl(
struct ggml_tensor * a, struct ggml_tensor * a,
struct ggml_tensor * b, struct ggml_tensor * b,
bool inplace) { bool inplace) {
GGML_ASSERT(ggml_are_same_shape(a, b)); // TODO: support less-strict constraint
// GGML_ASSERT(ggml_can_repeat(b, a));
GGML_ASSERT(ggml_can_repeat_rows(b, a));
bool is_node = false; bool is_node = false;
if (!inplace && (a->grad || b->grad)) { if (!inplace && (a->grad || b->grad)) {
// TODO: support backward pass for broadcasting
GGML_ASSERT(ggml_are_same_shape(a, b));
is_node = true; is_node = true;
} }
@ -7960,7 +7970,7 @@ static void ggml_compute_forward_mul_f32(
const struct ggml_tensor * src0, const struct ggml_tensor * src0,
const struct ggml_tensor * src1, const struct ggml_tensor * src1,
struct ggml_tensor * dst) { struct ggml_tensor * dst) {
assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return; return;
@ -7968,10 +7978,25 @@ static void ggml_compute_forward_mul_f32(
const int ith = params->ith; const int ith = params->ith;
const int nth = params->nth; const int nth = params->nth;
const int nr = ggml_nrows(src0); #ifdef GGML_USE_CUBLAS
const int64_t ne0 = src0->ne[0]; if (src1->backend == GGML_BACKEND_CUDA) {
const int64_t ne1 = src0->ne[1]; if (ith == 0) {
const int64_t ne2 = src0->ne[2]; ggml_cuda_mul(src0, src1, dst);
}
return;
}
#endif
const int64_t nr = ggml_nrows(src0);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int64_t ne12 = src1->ne[2];
const int64_t ne13 = src1->ne[3];
const size_t nb00 = src0->nb[0]; const size_t nb00 = src0->nb[0];
const size_t nb01 = src0->nb[1]; const size_t nb01 = src0->nb[1];
@ -7990,44 +8015,51 @@ static void ggml_compute_forward_mul_f32(
GGML_ASSERT( nb0 == sizeof(float)); GGML_ASSERT( nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float));
GGML_ASSERT(ne00 == ne10);
if (nb10 == sizeof(float)) { if (nb10 == sizeof(float)) {
for (int ir = ith; ir < nr; ir += nth) { for (int64_t ir = ith; ir < nr; ir += nth) {
// src0, src1 and dst are same shape => same indices // src0 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1); const int64_t i03 = ir/(ne02*ne01);
const int i2 = (ir - i3*ne2*ne1)/ne1; const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1); const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
const int64_t i13 = i03 % ne13;
const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11;
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
#ifdef GGML_USE_ACCELERATE #ifdef GGML_USE_ACCELERATE
UNUSED(ggml_vec_mul_f32); UNUSED(ggml_vec_mul_f32);
vDSP_vmul( vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
ne0);
#else #else
ggml_vec_mul_f32(ne0, ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
#endif #endif
// } // }
// } // }
} }
} else { } else {
// src1 is not contiguous // src1 is not contiguous
for (int ir = ith; ir < nr; ir += nth) { for (int64_t ir = ith; ir < nr; ir += nth) {
// src0, src1 and dst are same shape => same indices // src0 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1); // src1 is broadcastable across src0 and dst in i1, i2, i3
const int i2 = (ir - i3*ne2*ne1)/ne1; const int64_t i03 = ir/(ne02*ne01);
const int i1 = (ir - i3*ne2*ne1 - i2*ne1); const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ); const int64_t i13 = i03 % ne13;
float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); const int64_t i12 = i02 % ne12;
for (int i0 = 0; i0 < ne0; i0++) { const int64_t i11 = i01 % ne11;
float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
for (int64_t i0 = 0; i0 < ne00; i0++) {
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr); dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
} }

View file

@ -172,7 +172,7 @@ struct llama_mmap {
#ifdef _POSIX_MAPPED_FILES #ifdef _POSIX_MAPPED_FILES
static constexpr bool SUPPORTED = true; static constexpr bool SUPPORTED = true;
llama_mmap(struct llama_file * file, bool prefetch = true) { llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */) {
size = file->size; size = file->size;
int fd = fileno(file->fp); int fd = fileno(file->fp);
int flags = MAP_SHARED; int flags = MAP_SHARED;
@ -184,9 +184,9 @@ struct llama_mmap {
throw std::runtime_error(format("mmap failed: %s", strerror(errno))); throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
} }
if (prefetch) { if (prefetch > 0) {
// Advise the kernel to preload the mapped memory // Advise the kernel to preload the mapped memory
if (madvise(addr, file->size, MADV_WILLNEED)) { if (madvise(addr, std::min(file->size, prefetch), MADV_WILLNEED)) {
fprintf(stderr, "warning: madvise(.., MADV_WILLNEED) failed: %s\n", fprintf(stderr, "warning: madvise(.., MADV_WILLNEED) failed: %s\n",
strerror(errno)); strerror(errno));
} }

199
llama.cpp
View file

@ -1,6 +1,7 @@
// Defines fileno on msys: // Defines fileno on msys:
#ifndef _GNU_SOURCE #ifndef _GNU_SOURCE
#define _GNU_SOURCE #define _GNU_SOURCE
#include <cstddef>
#include <cstdint> #include <cstdint>
#include <cstdio> #include <cstdio>
#endif #endif
@ -645,7 +646,7 @@ struct llama_model_loader {
} }
} }
struct ggml_tensor * get_tensor(const std::string & name, const std::vector<uint32_t> & ne) { struct ggml_tensor * get_tensor(const std::string & name, const std::vector<uint32_t> & ne, ggml_backend backend) {
auto it = tensors_map.name_to_idx.find(name); auto it = tensors_map.name_to_idx.find(name);
if (it == tensors_map.name_to_idx.end()) { if (it == tensors_map.name_to_idx.end()) {
throw format("llama.cpp: tensor '%s' is missing from model", name.c_str()); throw format("llama.cpp: tensor '%s' is missing from model", name.c_str());
@ -656,10 +657,10 @@ struct llama_model_loader {
name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str()); name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str());
} }
return get_tensor_for(lt); return get_tensor_for(lt, backend);
} }
struct ggml_tensor * get_tensor_for(llama_load_tensor & lt) { struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, ggml_backend backend) {
struct ggml_tensor * tensor; struct ggml_tensor * tensor;
if (lt.ne.size() == 2) { if (lt.ne.size() == 2) {
tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1)); tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
@ -669,6 +670,7 @@ struct llama_model_loader {
} }
ggml_set_name(tensor, lt.name.c_str()); ggml_set_name(tensor, lt.name.c_str());
LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
tensor->backend = backend;
lt.ggml_tensor = tensor; lt.ggml_tensor = tensor;
num_ggml_tensors_created++; num_ggml_tensors_created++;
return tensor; return tensor;
@ -682,12 +684,16 @@ struct llama_model_loader {
void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) { void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
size_t data_size = 0; size_t data_size = 0;
size_t prefetch_size = 0;
for (const llama_load_tensor & lt : tensors_map.tensors) { for (const llama_load_tensor & lt : tensors_map.tensors) {
data_size += lt.size; data_size += lt.size;
if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
prefetch_size += lt.size;
}
} }
if (use_mmap) { if (use_mmap) {
mapping.reset(new llama_mmap(&file_loaders.at(0)->file)); mapping.reset(new llama_mmap(&file_loaders.at(0)->file, prefetch_size));
if (!lmlock) { if (!lmlock) {
// Don't call the callback since the actual loading will be lazy // Don't call the callback since the actual loading will be lazy
// and we can't measure it. // and we can't measure it.
@ -700,6 +706,9 @@ struct llama_model_loader {
size_t done_size = 0; size_t done_size = 0;
for (llama_load_tensor & lt : tensors_map.tensors) { for (llama_load_tensor & lt : tensors_map.tensors) {
if (lt.ggml_tensor->backend != GGML_BACKEND_CPU) {
continue;
}
if (progress_callback) { if (progress_callback) {
progress_callback((float) done_size / data_size, progress_callback_user_data); progress_callback((float) done_size / data_size, progress_callback_user_data);
} }
@ -712,9 +721,6 @@ struct llama_model_loader {
lmlock->grow_to(done_size); lmlock->grow_to(done_size);
} }
} }
if (progress_callback) {
progress_callback(1.0f, progress_callback_user_data);
}
} }
void load_data_for(llama_load_tensor & lt) { void load_data_for(llama_load_tensor & lt) {
@ -969,27 +975,7 @@ static void llama_model_load_internal(
size_t ctx_size; size_t ctx_size;
size_t mmapped_size; size_t mmapped_size;
ml->calc_sizes(&ctx_size, &mmapped_size); ml->calc_sizes(&ctx_size, &mmapped_size);
fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/1024.0/1024.0); fprintf(stderr, "%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
// print memory requirements
{
const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
// this is the total memory required to run the inference
const size_t mem_required =
ctx_size +
mmapped_size +
MEM_REQ_SCRATCH0().at(model.type) +
MEM_REQ_SCRATCH1().at(model.type) +
MEM_REQ_EVAL().at(model.type);
// this is the memory required by one llama_state
const size_t mem_required_state =
scale*MEM_REQ_KV_SELF().at(model.type);
fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
}
// create the ggml context // create the ggml context
{ {
@ -1011,7 +997,14 @@ static void llama_model_load_internal(
} }
} }
#ifdef GGML_USE_CUBLAS
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CUDA
#else
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
#endif
// prepare memory for the weights // prepare memory for the weights
size_t vram_total = 0;
{ {
const uint32_t n_embd = hparams.n_embd; const uint32_t n_embd = hparams.n_embd;
const uint32_t n_layer = hparams.n_layer; const uint32_t n_layer = hparams.n_layer;
@ -1019,33 +1012,87 @@ static void llama_model_load_internal(
ml->ggml_ctx = ctx; ml->ggml_ctx = ctx;
model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}); model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}, GGML_BACKEND_CPU);
model.norm = ml->get_tensor("norm.weight", {n_embd}); model.norm = ml->get_tensor("norm.weight", {n_embd}, GGML_BACKEND_CPU);
model.output = ml->get_tensor("output.weight", {n_embd, n_vocab});
// "output" tensor
{
ggml_backend backend_output;
if (n_gpu_layers > int(n_layer)) { // NOLINT
backend_output = LLAMA_BACKEND_OFFLOAD;
} else {
backend_output = GGML_BACKEND_CPU;
}
model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}, backend_output);
}
const int i_gpu_start = n_layer - n_gpu_layers;
model.layers.resize(n_layer); model.layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) { for (uint32_t i = 0; i < n_layer; ++i) {
const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
auto & layer = model.layers[i]; auto & layer = model.layers[i];
std::string layers_i = "layers." + std::to_string(i); std::string layers_i = "layers." + std::to_string(i);
layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}); layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}, backend);
layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}); layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}, backend);
layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd}); layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd}, backend);
layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd}); layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd}, backend);
layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}); layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}, backend);
layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}); layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend);
layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}); layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}, backend);
layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}); layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}, backend);
layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}); layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}, backend);
if (backend == GGML_BACKEND_CUDA) {
vram_total +=
ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.attention_norm) +
ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
}
} }
} }
ml->done_getting_tensors(); ml->done_getting_tensors();
// print memory requirements
{
const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
// this is the total memory required to run the inference
const size_t mem_required =
ctx_size +
mmapped_size - vram_total + // weights in VRAM not in memory
MEM_REQ_SCRATCH0().at(model.type) +
MEM_REQ_SCRATCH1().at(model.type) +
MEM_REQ_EVAL().at(model.type);
// this is the memory required by one llama_state
const size_t mem_required_state =
scale*MEM_REQ_KV_SELF().at(model.type);
fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
#ifdef GGML_USE_CUBLAS
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
fprintf(stderr, "%s: [cublas] offloading %d layers to GPU\n", __func__, n_gpu);
if (n_gpu_layers > (int) hparams.n_layer) {
fprintf(stderr, "%s: [cublas] offloading output layer to GPU\n", __func__);
}
fprintf(stderr, "%s: [cublas] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024);
#else
(void) n_gpu_layers;
#endif
}
// populate `tensors_by_name` // populate `tensors_by_name`
for (llama_load_tensor & lt : ml->tensors_map.tensors) { for (llama_load_tensor & lt : ml->tensors_map.tensors) {
model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor); model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
@ -1053,36 +1100,34 @@ static void llama_model_load_internal(
ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL); ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
model.mapping = std::move(ml->mapping);
#ifdef GGML_USE_CUBLAS #ifdef GGML_USE_CUBLAS
{ {
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); size_t done_size = 0;
size_t data_size = 0;
fprintf(stderr, "%s: [cublas] offloading %d layers to GPU\n", __func__, n_gpu); for (llama_load_tensor & lt : ml->tensors_map.tensors) {
data_size += lt.size;
size_t vram_total = 0; if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
done_size += lt.size;
for (int i = 0; i < n_gpu; ++i) { }
const auto & layer = model.layers[i];
ggml_cuda_transform_tensor(layer.wq); vram_total += ggml_nbytes(layer.wq);
ggml_cuda_transform_tensor(layer.wk); vram_total += ggml_nbytes(layer.wk);
ggml_cuda_transform_tensor(layer.wv); vram_total += ggml_nbytes(layer.wv);
ggml_cuda_transform_tensor(layer.wo); vram_total += ggml_nbytes(layer.wo);
ggml_cuda_transform_tensor(layer.w1); vram_total += ggml_nbytes(layer.w1);
ggml_cuda_transform_tensor(layer.w2); vram_total += ggml_nbytes(layer.w2);
ggml_cuda_transform_tensor(layer.w3); vram_total += ggml_nbytes(layer.w3);
} }
if (n_gpu_layers > (int) hparams.n_layer) { for (llama_load_tensor & lt : ml->tensors_map.tensors) {
fprintf(stderr, "%s: [cublas] offloading output layer to GPU\n", __func__); if (lt.ggml_tensor->backend != GGML_BACKEND_CUDA) {
ggml_cuda_transform_tensor(model.output); vram_total += ggml_nbytes(model.output); continue;
}
if (progress_callback) {
progress_callback((float) done_size / data_size, progress_callback_user_data);
}
ggml_cuda_load_data(fname.c_str(), lt.ggml_tensor, lt.shards.at(0).file_off);
done_size += lt.size;
} }
fprintf(stderr, "%s: [cublas] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024);
} }
#else #endif // GGML_USE_CUBLAS
(void) n_gpu_layers;
#endif if (progress_callback) {
progress_callback(1.0f, progress_callback_user_data);
}
model.mapping = std::move(ml->mapping);
// loading time will be recalculate after the first eval, so // loading time will be recalculate after the first eval, so
// we take page faults deferred by mmap() into consideration // we take page faults deferred by mmap() into consideration
@ -1181,10 +1226,8 @@ static bool llama_eval_internal(
{ {
cur = ggml_rms_norm(ctx0, inpL); cur = ggml_rms_norm(ctx0, inpL);
// cur = attention_norm*cur // cur = cur*attention_norm(broadcasted)
cur = ggml_mul(ctx0, cur = ggml_mul(ctx0, cur, model.layers[il].attention_norm);
ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
cur);
} }
// self-attention // self-attention
@ -1291,10 +1334,8 @@ static bool llama_eval_internal(
{ {
cur = ggml_rms_norm(ctx0, inpFF); cur = ggml_rms_norm(ctx0, inpFF);
// cur = ffn_norm*cur // cur = cur*ffn_norm(broadcasted)
cur = ggml_mul(ctx0, cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
cur);
} }
struct ggml_tensor * tmp = ggml_mul_mat(ctx0, struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
@ -1331,10 +1372,8 @@ static bool llama_eval_internal(
inpL = ggml_rms_norm(ctx0, inpL); inpL = ggml_rms_norm(ctx0, inpL);
// inpL = norm*inpL // inpL = inpL*norm(broadcasted)
inpL = ggml_mul(ctx0, inpL = ggml_mul(ctx0, inpL, model.norm);
ggml_repeat(ctx0, model.norm, inpL),
inpL);
embeddings = inpL; embeddings = inpL;
} }
@ -2158,7 +2197,7 @@ struct llama_context * llama_init_from_file(
unsigned * cur_percentage_p = (unsigned *) ctx; unsigned * cur_percentage_p = (unsigned *) ctx;
unsigned percentage = (unsigned) (100 * progress); unsigned percentage = (unsigned) (100 * progress);
while (percentage > *cur_percentage_p) { while (percentage > *cur_percentage_p) {
++*cur_percentage_p; *cur_percentage_p = percentage;
fprintf(stderr, "."); fprintf(stderr, ".");
fflush(stderr); fflush(stderr);
if (percentage >= 100) { if (percentage >= 100) {
@ -2315,7 +2354,7 @@ int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char *
// maybe this should in llama_model_loader // maybe this should in llama_model_loader
if (model_loader->use_mmap) { if (model_loader->use_mmap) {
model_loader->mapping.reset(new llama_mmap(&model_loader->file_loaders.at(0)->file, /* prefetch */ false)); model_loader->mapping.reset(new llama_mmap(&model_loader->file_loaders.at(0)->file, /* prefetch */ 0));
} }
} }
@ -2408,7 +2447,7 @@ int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char *
} }
size_t idx = model_loader->tensors_map.name_to_idx[base_name]; size_t idx = model_loader->tensors_map.name_to_idx[base_name];
llama_load_tensor & lt = model_loader->tensors_map.tensors[idx]; llama_load_tensor & lt = model_loader->tensors_map.tensors[idx];
base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }); base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU);
lt.data = (uint8_t *) lt.ggml_tensor->data; lt.data = (uint8_t *) lt.ggml_tensor->data;
model_loader->load_data_for(lt); model_loader->load_data_for(lt);
lt.ggml_tensor->data = lt.data; lt.ggml_tensor->data = lt.data;