From 99009e72f8072fa552eb02efee436be596c71cdd Mon Sep 17 00:00:00 2001 From: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Mon, 5 Jun 2023 22:56:18 +0300 Subject: [PATCH] ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684) * Starting to add k-quantization to ggml I think it is better to have quantization separate from ggml. For now just adding the k-quants there, but it would be better to also factor out the existing ggml quantizations. * Adding Q3_K and Q8_K (de)-quantization * Q3_K now working on CUDA and AVX2/scalar CUDA is not ideal - ~50% slower than Q4_0 for single token prediction, about the same in batch mode (perplexity). CPU single token is ~55 ms (on Ryzen 7950X). * Some improvement for Q3_K on CUDA It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0. * Some more CUDA optimizations for Q3_K Single token is now 20.5 ms/token (~20% slower than Q4_0). Perplexity is on par with Q4_0. * Adding Q4_K - scalar, AVX2, CUDA Performance is the same or perhaps very slightly better than Q4_0 on the CPU. On the GPU, single token prediction is ~10% better than Q4_0, batch mode (perplexity is about the same). * Adding Q6_K - scalar, AVX2, CUDA Performance is ~40% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 6-bit model is ~44% larger than the 4-bit. On the GPU, single token prediction is ~6% lower than Q4_0, batch mode (perplexity) is even closer (but still slower). * Adding Q5_K - scalar, AVX2, CUDA Performance is ~20% lower compared to Q4_K on the CPU. This is to be expected, considering that we are memory bound on the CPU and the 5-bit model is ~22% larger than the 4-bit. On the GPU, single token prediction is about the same as Q4_0 for both, single token and batch prediction. * Per convention, all QX_K quantizations use Q5_K for output.weight * Adding quantization mixes * Quantization mixes: didn't quite get what I wanted in the last commit * Q4_K dot product for ARM_NEON * Q6_K dot product for ARM_NEON * Q5_K dot product for ARM_NEON * Adding Q3_K dot for ARM_NEON It is 22% slower than Q4_K, despite the smaller model size. On x86_64, where we are memory bound, the Q3_K model is quite a bit faster than Q4_K. * A very slightly faster ARM_NEON Q3_K dot * Adding Q2_K - just CUDA for now Token prediction is pretty good - about 15.5 ms on a RTX 4080. Perplexity is about the same as Q4_K. * Adding scalar and AVX2 Q2_K dot * Adding ARM_NEON Q2_K dot About the same performance as Q4_K. * A slightly faster ARM_NEON Q2_K dot Single token prediction is now ~36 ms on M2 Max. The code is much simpler too. * Fixed bug in Q2_K CUDA dot product kernel Stranegly enough, for the few prompts I tried with the 7B model the responses looked perfectly reasonable. Only realized something is not quite right when I tried the larger models and started getting nonse back. In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X box iusing CUDA and model fully loaded on the GPU are ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B. The max number of layers that fit in VRAM for The 65B is 32. With that, we get ~330 ms per token, which is not that much faster than just running on the CPU (~470 ms per token). * Don't print zeros/NaNs when no count histogram has been collected * A 10% faster CUDA vector dot kernel for Q3_K Q3_K is now running at ~18.5 ms / token on CUDA, so the gap to Q4_0 is only 10%. It seems memory acccess pattern is more important for performance than the amount of computation the kernel does. * A slightly daster Q4_K AVX2 dot product For perplexity, where we are less memory bound, time per pass drops by ~5%. Barely measurable difference for single token prediction. * A slightly faster ARM_NEON A4_K dot product * Minor * Fix quantization error test We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit quantization variants. * Fix docker build I have been sloppy with vector reinterpret casts on ARM_NEON. It seems clang is very forgiving in that regard. * Added forgotten ggml.o dependence on k_quants.h to the Makefile * Had unintentionally committed the Makefile with -Ofast enabled * ggml : rename k_quants -> ggml-quants-k, use lowercase in code --------- Co-authored-by: Iwan Kawrakow Co-authored-by: Georgi Gerganov --- CMakeLists.txt | 2 + Makefile | 26 +- examples/quantize-stats/quantize-stats.cpp | 5 +- examples/quantize/quantize.cpp | 22 +- ggml-cuda.cu | 491 +++++ ggml-quants-k.c | 2246 ++++++++++++++++++++ ggml-quants-k.h | 122 ++ ggml.c | 150 +- ggml.h | 12 + llama.cpp | 85 +- llama.h | 9 + tests/test-quantize-fns.cpp | 7 +- 12 files changed, 3148 insertions(+), 29 deletions(-) create mode 100644 ggml-quants-k.c create mode 100644 ggml-quants-k.h diff --git a/CMakeLists.txt b/CMakeLists.txt index 1f2e78c..da5913d 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -396,6 +396,8 @@ endif() add_library(ggml OBJECT ggml.c ggml.h + ggml-quants-k.h + ggml-quants-k.c ${GGML_SOURCES_CUDA} ${GGML_SOURCES_OPENCL} ${GGML_SOURCES_METAL} diff --git a/Makefile b/Makefile index 1f910c3..7c9e7f7 100644 --- a/Makefile +++ b/Makefile @@ -40,8 +40,11 @@ endif # # keep standard at C11 and C++11 -CFLAGS = -I. -O3 -std=c11 -fPIC -CXXFLAGS = -I. -I./examples -O3 -std=c++11 -fPIC +# -Ofast tends to produce faster code, but may not be available for some compilers. +#OPT = -Ofast +OPT = -O3 +CFLAGS = -I. $(OPT) -std=c11 -fPIC +CXXFLAGS = -I. -I./examples $(OPT) -std=c++11 -fPIC LDFLAGS = ifdef LLAMA_DEBUG @@ -228,7 +231,10 @@ $(info ) # Build library # -ggml.o: ggml.c ggml.h ggml-cuda.h +ggml.o: ggml.c ggml.h ggml-cuda.h ggml-quants-k.h + $(CC) $(CFLAGS) -c $< -o $@ + +ggml-quants-k.o: ggml-quants-k.c ggml-quants-k.h ggml.h ggml-cuda.h $(CC) $(CFLAGS) -c $< -o $@ llama.o: llama.cpp ggml.h ggml-cuda.h llama.h llama-util.h @@ -247,25 +253,25 @@ clean: # Examples # -main: examples/main/main.cpp build-info.h ggml.o llama.o common.o $(OBJS) +main: examples/main/main.cpp build-info.h ggml.o ggml-quants-k.o llama.o common.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) @echo @echo '==== Run ./main -h for help. ====' @echo -quantize: examples/quantize/quantize.cpp build-info.h ggml.o llama.o $(OBJS) +quantize: examples/quantize/quantize.cpp build-info.h ggml.o llama.o ggml-quants-k.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -quantize-stats: examples/quantize-stats/quantize-stats.cpp build-info.h ggml.o llama.o $(OBJS) +quantize-stats: examples/quantize-stats/quantize-stats.cpp build-info.h ggml.o llama.o ggml-quants-k.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -perplexity: examples/perplexity/perplexity.cpp build-info.h ggml.o llama.o common.o $(OBJS) +perplexity: examples/perplexity/perplexity.cpp build-info.h ggml.o llama.o common.o ggml-quants-k.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -embedding: examples/embedding/embedding.cpp build-info.h ggml.o llama.o common.o $(OBJS) +embedding: examples/embedding/embedding.cpp build-info.h ggml.o llama.o common.o ggml-quants-k.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.o llama.o common.o $(OBJS) +save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.o llama.o common.o ggml-quants-k.o $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp build-info.h ggml.o llama.o common.o $(OBJS) @@ -287,7 +293,7 @@ benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) ./$@ -vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS) +vdot: pocs/vdot/vdot.cpp ggml.o ggml-quants-k.o $(OBJS) $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) .PHONY: tests clean diff --git a/examples/quantize-stats/quantize-stats.cpp b/examples/quantize-stats/quantize-stats.cpp index 085fdde..6e4f7e1 100644 --- a/examples/quantize-stats/quantize-stats.cpp +++ b/examples/quantize-stats/quantize-stats.cpp @@ -282,8 +282,9 @@ int main(int argc, char ** argv) { break; } int j; - for (j = 0; j < GGML_TYPE_COUNT && strcmp(argv[i], ggml_type_name((ggml_type) j)) != 0; j++) { - // find match + for (j = 0; j < GGML_TYPE_COUNT; ++j) { + const auto * name = ggml_type_name((ggml_type) j); + if (name && strcmp(argv[i], name) == 0) break; } if (j < GGML_TYPE_COUNT) { params.include_types.push_back((ggml_type) j); diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index 769dd36..947b402 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -7,11 +7,23 @@ #include static const std::map LLAMA_FTYPE_MAP = { - {"q4_0", LLAMA_FTYPE_MOSTLY_Q4_0}, - {"q4_1", LLAMA_FTYPE_MOSTLY_Q4_1}, - {"q5_0", LLAMA_FTYPE_MOSTLY_Q5_0}, - {"q5_1", LLAMA_FTYPE_MOSTLY_Q5_1}, - {"q8_0", LLAMA_FTYPE_MOSTLY_Q8_0}, + {"q4_0", LLAMA_FTYPE_MOSTLY_Q4_0}, + {"q4_1", LLAMA_FTYPE_MOSTLY_Q4_1}, + {"q5_0", LLAMA_FTYPE_MOSTLY_Q5_0}, + {"q5_1", LLAMA_FTYPE_MOSTLY_Q5_1}, + {"q8_0", LLAMA_FTYPE_MOSTLY_Q8_0}, + {"q2_K", LLAMA_FTYPE_MOSTLY_Q2_K}, + {"q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M}, + {"q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S}, + {"q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M}, + {"q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L}, + {"q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M}, + {"q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S}, + {"q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M}, + {"q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M}, + {"q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S}, + {"q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M}, + {"q6_K", LLAMA_FTYPE_MOSTLY_Q6_K}, }; bool try_parse_ftype(const std::string & ftype_str, llama_ftype & ftype, std::string & ftype_str_out) { diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 98170a3..5385e01 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -3,6 +3,7 @@ #include #include #include +#include #include #include @@ -35,6 +36,7 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size"); typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, float & v0, float & v1); typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream); typedef void (*dequantize_mul_mat_vec_cuda_t)(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream); +typedef void (*dot_kernel_k_t)(const void * vx, const int ib, const int iqs, const float * y, float & v); // QK = number of values after dequantization // QR = QK / number of values before dequantization @@ -83,6 +85,51 @@ typedef struct { } block_q8_0; static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding"); +//================================= k-quants + +#define QK_K 256 + +typedef struct { + uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits + uint8_t qs[QK_K/4]; // quants + half d; // super-block scale for quantized scales + half dmin; // super-block scale for quantized mins +} block_q2_k; +static_assert(sizeof(block_q2_k) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_k block size/padding"); + +typedef struct { + uint8_t hmask[QK_K/8]; + uint8_t qs[QK_K/4]; // nibbles / quants + uint8_t scales[3*QK_K/64]; + half d; +} block_q3_k; +static_assert(sizeof(block_q3_k) == sizeof(ggml_fp16_t) + QK_K / 4 + 11 * QK_K / 64, "wrong q3_k block size/padding"); + +typedef struct { + half d; // super-block scale for quantized scales + half dmin; // super-block scale for quantized mins + uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits + uint8_t qs[QK_K/2]; // 4--bit quants +} block_q4_k; +static_assert(sizeof(block_q4_k) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_k block size/padding"); + +typedef struct { + half d; // super-block scale for quantized scales + half dmin; // super-block scale for quantized mins + uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits + uint8_t qh[QK_K/8]; // quants, high bit + uint8_t qs[QK_K/2]; // quants, low 4 bits +} block_q5_k; +static_assert(sizeof(block_q5_k) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2 + QK_K/8, "wrong q5_k block size/padding"); + +typedef struct { + uint8_t ql[QK_K/2]; // quants, lower 4 bits + uint8_t qh[QK_K/4]; // quants, upper 2 bits + int8_t scales[QK_K/16]; // scales + half d; // delta +} block_q6_k; +static_assert(sizeof(block_q6_k) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_k block size/padding"); + #define WARP_SIZE 32 #define CUDA_MUL_BLOCK_SIZE 256 @@ -184,6 +231,337 @@ static __device__ void dequantize_q8_0(const void * vx, const int ib, const int v1 = vi1*d; } +//================================== k-quants + +static __global__ void dequantize_block_q2_k(const void * vx, float * yy) { + + const int i = blockIdx.x; + const int tid = threadIdx.x; + const int n = tid/32; + const int l = tid - 32*n; + const int is = 8*n + l/16; + + const block_q2_k * x = (const block_q2_k *) vx; + + const uint8_t q = x[i].qs[32*n + l]; + float * y = yy + i*QK_K + 128*n; + + float dall = x[i].d; + float dmin = x[i].dmin; + y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4); + y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4); + y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4); + y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4); + +} + +static __device__ void vec_dot_q2_k(const void * vx, const int ib, const int iqs, const float * yy, float & result) { + + const block_q2_k * x = (const block_q2_k *) vx; + + // if n is 0, we want to do the lower 128, else the upper 128, + // covering y[l+0], y[l+32], y[l+64], y[l+96] and + // y[l+16], y[l+48], y[l+80], y[l+112] + int n = iqs/128; // 0 or 1 + int r = iqs - 128*n; // 0...120 in steps of 8 + int l = r/8; // 0...15 in steps of 1 + + const float * y = yy + 128*n + l; + const uint8_t * q = x[ib].qs + 32*n + l; + const uint8_t * s = x[ib].scales + 8*n; + + const float dall = x[ib].d; + const float dmin = x[ib].dmin; + + float sum = y[ 0] * (dall * ((s[0] & 0xF) * ((q[ 0] >> 0) & 3)) - dmin * (s[0] >> 4)) + + y[ 32] * (dall * ((s[2] & 0xF) * ((q[ 0] >> 2) & 3)) - dmin * (s[2] >> 4)) + + y[ 64] * (dall * ((s[4] & 0xF) * ((q[ 0] >> 4) & 3)) - dmin * (s[4] >> 4)) + + y[ 96] * (dall * ((s[6] & 0xF) * ((q[ 0] >> 6) & 3)) - dmin * (s[6] >> 4)) + + y[ 16] * (dall * ((s[1] & 0xF) * ((q[16] >> 0) & 3)) - dmin * (s[1] >> 4)) + + y[ 48] * (dall * ((s[3] & 0xF) * ((q[16] >> 2) & 3)) - dmin * (s[3] >> 4)) + + y[ 80] * (dall * ((s[5] & 0xF) * ((q[16] >> 4) & 3)) - dmin * (s[5] >> 4)) + + y[112] * (dall * ((s[7] & 0xF) * ((q[16] >> 6) & 3)) - dmin * (s[7] >> 4)); + + result = sum; + +} + +static __global__ void dequantize_block_q3_k(const void * vx, float * yy) { + + int r = threadIdx.x/4; + int i = blockIdx.x; + int tid = r/2; + int is0 = r%2; + int l0 = 16*is0 + 4*(threadIdx.x%4); + int n = tid / 4; + int j = tid - 4*n; + + const block_q3_k * x = (const block_q3_k *) vx; + + uint8_t m = 1 << (4*n + j); + int is = 8*n + 2*j + is0; + int shift = 2*j; + + int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) : + is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) : + is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) : + (x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4); + float d_all = x[i].d; + float dl = d_all * (us - 32); + + float * y = yy + i*QK_K + 128*n + 32*j; + const uint8_t * q = x[i].qs + 32*n; + const uint8_t * hm = x[i].hmask; + + for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4)); + +} + +static __device__ void vec_dot_q3_k(const void * vx, const int ib, const int iqs, const float * yy, float & result) { + + const block_q3_k * x = (const block_q3_k *) vx; + + const uint32_t kmask1 = 0x03030303; + const uint32_t kmask2 = 0x0f0f0f0f; + + uint32_t aux[3]; + uint32_t utmp[4]; + + // if n is 0, we want to do the lower 128, else the upper 128, + // covering y[l+0], y[l+32], y[l+64], y[l+96] and + // y[l+16], y[l+48], y[l+80], y[l+112] + int n = iqs/128; // 0 or 1 + int r = iqs - 128*n; // 0...120 in steps of 8 + int l = r/8; // 0...15 in steps of 1 + + const float * y = yy + 128*n + l; + const uint8_t * q = x[ib].qs + 32*n + l; + const uint8_t * hm = x[ib].hmask + l; + const int8_t * s = (const int8_t *)utmp + 8*n; + + memcpy(aux, x[ib].scales, 12); + utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4); + utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4); + utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4); + utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4); + + const float dall = x[ib].d; + + const uint8_t m = 1 << (4*n); + + float sum = y[ 0] * (s[0] - 32) * (((q[ 0] >> 0) & 3) - (hm[ 0] & (m << 0) ? 0 : 4)) + + y[ 32] * (s[2] - 32) * (((q[ 0] >> 2) & 3) - (hm[ 0] & (m << 1) ? 0 : 4)) + + y[ 64] * (s[4] - 32) * (((q[ 0] >> 4) & 3) - (hm[ 0] & (m << 2) ? 0 : 4)) + + y[ 96] * (s[6] - 32) * (((q[ 0] >> 6) & 3) - (hm[ 0] & (m << 3) ? 0 : 4)) + + y[ 16] * (s[1] - 32) * (((q[16] >> 0) & 3) - (hm[16] & (m << 0) ? 0 : 4)) + + y[ 48] * (s[3] - 32) * (((q[16] >> 2) & 3) - (hm[16] & (m << 1) ? 0 : 4)) + + y[ 80] * (s[5] - 32) * (((q[16] >> 4) & 3) - (hm[16] & (m << 2) ? 0 : 4)) + + y[112] * (s[7] - 32) * (((q[16] >> 6) & 3) - (hm[16] & (m << 3) ? 0 : 4)); + + result = sum * dall; + +} + +static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) { + if (j < 4) { + d = q[j] & 63; m = q[j + 4] & 63; + } else { + d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4); + m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4); + } +} + +static __global__ void dequantize_block_q4_k(const void * vx, float * yy) { + const block_q4_k * x = (const block_q4_k *) vx; + + const int i = blockIdx.x; + + //// assume 64 threads - this is very slightly better than the one below + //const int tid = threadIdx.x; + //const int il = tid/16; + //const int ir = tid%16; + //const int is = 2*il; + //const int n = 2; + + // assume 32 threads + const int tid = threadIdx.x; + const int il = tid/8; + const int ir = tid%8; + const int is = 2*il; + const int n = 4; + + float * y = yy + i*QK_K + 64*il + n*ir; + + const float dall = x[i].d; + const float dmin = x[i].dmin; + + const uint8_t * q = x[i].qs + 32*il + n*ir; + + uint8_t sc, m; + get_scale_min_k4(is + 0, x[i].scales, sc, m); + const float d1 = dall * sc; const float m1 = dmin * m; + get_scale_min_k4(is + 1, x[i].scales, sc, m); + const float d2 = dall * sc; const float m2 = dmin * m; + for (int l = 0; l < n; ++l) { + y[l + 0] = d1 * (q[l] & 0xF) - m1; + y[l +32] = d2 * (q[l] >> 4) - m2; + } +} + +static __device__ void vec_dot_q4_k(const void * vx, const int ib, const int iqs, const float * yy, float & result) { + + const block_q4_k * x = (const block_q4_k *) vx; + + // iqs is in 0...248 in steps of 8 => + const int j = iqs / 64; // j is in 0...3 + const int ir = (iqs - 64*j)/2; // ir is in 0...28 in steps of 4 + const int is = 2*j; // is is in 0...6 in steps of 2 + + const float * y = yy + 64*j + ir; + const uint8_t * q = x[ib].qs + 32*j + ir; + + const float dall = x[ib].d; + const float dmin = x[ib].dmin; + + uint8_t sc, m; + get_scale_min_k4(is + 0, x[ib].scales, sc, m); + const float d1 = dall * sc; + const float m1 = dmin * m; + get_scale_min_k4(is + 1, x[ib].scales, sc, m); + const float d2 = dall * sc; + const float m2 = dmin * m; + + float sum = 0; + for (int k = 0; k < 4; ++k) { + sum += y[k + 0] * (d1 * (q[k] & 0xF) - m1); + sum += y[k + 32] * (d2 * (q[k] >> 4) - m2); + } + result = sum; + +} + +static __global__ void dequantize_block_q5_k(const void * vx, float * yy) { + const block_q5_k * x = (const block_q5_k *) vx; + + const int i = blockIdx.x; + + // assume 64 threads - this is very slightly better than the one below + const int tid = threadIdx.x; + const int il = tid/16; // il is in 0...3 + const int ir = tid%16; // ir is in 0...15 + const int is = 2*il; // is is in 0...6 + + float * y = yy + i*QK_K + 64*il + 2*ir; + + const float dall = x[i].d; + const float dmin = x[i].dmin; + + const uint8_t * ql = x[i].qs + 32*il + 2*ir; + const uint8_t * qh = x[i].qh + 2*ir; + + uint8_t sc, m; + get_scale_min_k4(is + 0, x[i].scales, sc, m); + const float d1 = dall * sc; const float m1 = dmin * m; + get_scale_min_k4(is + 1, x[i].scales, sc, m); + const float d2 = dall * sc; const float m2 = dmin * m; + + uint8_t hm = 1 << (2*il); + y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1; + y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1; + hm <<= 1; + y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2; + y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2; +} + +static __device__ void vec_dot_q5_k(const void * vx, const int ib, const int iqs, const float * yy, float & result) { + + const block_q5_k * x = (const block_q5_k *) vx; + + // iqs is in 0...248 in steps of 8 => + const int j = iqs / 64; // j is in 0...3 + const int ir = (iqs - 64*j)/2; // ir is in 0...28 in steps of 4 + const int is = 2*j; // is is in 0...6 in steps of 2 + + const float * y = yy + 64*j + ir; + const uint8_t * ql = x[ib].qs + 32*j + ir; + const uint8_t * qh = x[ib].qh + ir; + + const float dall = x[ib].d; + const float dmin = x[ib].dmin; + + uint8_t sc, m; + get_scale_min_k4(is + 0, x[ib].scales, sc, m); + const float d1 = dall * sc; + const float m1 = dmin * m; + get_scale_min_k4(is + 1, x[ib].scales, sc, m); + const float d2 = dall * sc; + const float m2 = dmin * m; + + uint8_t hm = 1 << is; + float sum = 0; + for (int k = 0; k < 4; ++k) { + sum += y[k + 0] * (d1 * ((ql[k] & 0xF) + (qh[k] & hm ? 16 : 0)) - m1); + } + hm <<= 1; + for (int k = 0; k < 4; ++k) { + sum += y[k + 32] * (d2 * ((ql[k] >> 4) + (qh[k] & hm ? 16 : 0)) - m2); + } + result = sum; + +} + +static __global__ void dequantize_block_q6_k(const void * vx, float * yy) { + const block_q6_k * x = (const block_q6_k *) vx; + + const int i = blockIdx.x; + + // assume 64 threads - this is very slightly better than the one below + const int tid = threadIdx.x; + const int ip = tid/32; // ip is 0 or 1 + const int il = tid - 32*ip; // 0...32 + const int is = 8*ip + il/16; + + float * y = yy + i*QK_K + 128*ip + il; + + const float d = x[i].d; + + const uint8_t * ql = x[i].ql + 64*ip + il; + const uint8_t qh = x[i].qh[32*ip + il]; + const int8_t * sc = x[i].scales + is; + + y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32); + y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32); + y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32); + y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32); +} + +static __device__ void vec_dot_q6_k(const void * vx, const int ib, const int iqs, const float * yy, float & result) { + + const block_q6_k * x = (const block_q6_k *) vx; + + const int ip = iqs / 128; // 0 or 1 + const int il = (iqs - 128*ip)/8; // 0...15 + const int is = 8*ip; + + const float * y = yy + 128*ip + il; + + const float d = x[ib].d; + + const uint8_t * ql = x[ib].ql + 64*ip + il; + const uint8_t * qh = x[ib].qh + 32*ip + il; + const int8_t * sc = x[ib].scales + is; + + result = y[ 0] * d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh[ 0] >> 0) & 3) << 4)) - 32) + + y[ 32] * d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh[ 0] >> 2) & 3) << 4)) - 32) + + y[ 64] * d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh[ 0] >> 4) & 3) << 4)) - 32) + + y[ 96] * d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh[ 0] >> 6) & 3) << 4)) - 32) + + y[ 16] * d * sc[1] * ((int8_t)((ql[16] & 0xF) | (((qh[16] >> 0) & 3) << 4)) - 32) + + y[ 48] * d * sc[3] * ((int8_t)((ql[48] & 0xF) | (((qh[16] >> 2) & 3) << 4)) - 32) + + y[ 80] * d * sc[5] * ((int8_t)((ql[16] >> 4) | (((qh[16] >> 4) & 3) << 4)) - 32) + + y[112] * d * sc[7] * ((int8_t)((ql[48] >> 4) | (((qh[16] >> 6) & 3) << 4)) - 32); + +} + static __device__ void convert_f16(const void * vx, const int ib, const int iqs, float & v0, float & v1){ const half * x = (const half *) vx; @@ -258,6 +636,41 @@ static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y, } } +template +static __global__ void dequantize_mul_mat_vec_k(const void * vx, const float * y, float * dst, const int ncols) { + const int row = blockIdx.x*blockDim.y + threadIdx.y; + const int tid = threadIdx.x; + + const int iter_stride = QK_K; + const int vals_per_iter = iter_stride / n_thread; + const int num_blocks_per_row = ncols / QK_K; + const int ib0 = row*num_blocks_per_row; + + float tmp = 0; // partial sum for thread in warp + + for (int i = 0; i < ncols; i += iter_stride) { + const int col = i + vals_per_iter*tid; + const int ib = ib0 + col/QK_K; // x block index + const int iqs = col%QK_K; // x quant index + const int iybs = col - col%QK_K; // y block start index + + float v; + dot_kernel(vx, ib, iqs, y + iybs, v); + tmp += v; + } + + // sum up partial sums and write back result + __syncthreads(); +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32); + } + + if (tid == 0) { + dst[row] = tmp; + } +} + static void mul_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) { const int num_blocks = (kx + CUDA_MUL_BLOCK_SIZE - 1) / CUDA_MUL_BLOCK_SIZE; mul_f32<<>>(x, y, dst, kx, ky); @@ -288,6 +701,31 @@ static void dequantize_row_q8_0_cuda(const void * vx, float * y, const int k, cu dequantize_block<<>>(vx, y, k); } +static void dequantize_row_q2_k_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { + const int nb = k / QK_K; + dequantize_block_q2_k<<>>(vx, y); +} + +static void dequantize_row_q3_k_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { + const int nb = k / QK_K; + dequantize_block_q3_k<<>>(vx, y); +} + +static void dequantize_row_q4_k_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { + const int nb = k / QK_K; + dequantize_block_q4_k<<>>(vx, y); +} + +static void dequantize_row_q5_k_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { + const int nb = k / QK_K; + dequantize_block_q5_k<<>>(vx, y); +} + +static void dequantize_row_q6_k_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { + const int nb = k / QK_K; + dequantize_block_q6_k<<>>(vx, y); +} + static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0); GGML_ASSERT(nrows % GGML_CUDA_DMMV_Y == 0); @@ -328,6 +766,37 @@ static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const float * y, f <<>>(vx, y, dst, ncols); } +static void dequantize_mul_mat_vec_q2_k_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { + GGML_ASSERT(ncols % QK_K == 0); + const int ny = 2; + const dim3 block_dims(32, ny, 1); + dequantize_mul_mat_vec_k<32, vec_dot_q2_k><<<(nrows + ny - 1)/ny, block_dims, 0, stream>>>(vx, y, dst, ncols); +} + +static void dequantize_mul_mat_vec_q3_k_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { + GGML_ASSERT(ncols % QK_K == 0); + const dim3 block_dims(32, 2, 1); + dequantize_mul_mat_vec_k<32, vec_dot_q3_k><<>>(vx, y, dst, ncols); +} + +static void dequantize_mul_mat_vec_q4_k_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { + GGML_ASSERT(ncols % QK_K == 0); + const dim3 block_dims(32, 2, 1); + dequantize_mul_mat_vec_k<32, vec_dot_q4_k><<>>(vx, y, dst, ncols); +} + +static void dequantize_mul_mat_vec_q5_k_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { + GGML_ASSERT(ncols % QK_K == 0); + const dim3 block_dims(32, 2, 1); + dequantize_mul_mat_vec_k<32, vec_dot_q5_k><<>>(vx, y, dst, ncols); +} + +static void dequantize_mul_mat_vec_q6_k_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) { + GGML_ASSERT(ncols % QK_K == 0); + const dim3 block_dims(32, 2, 1); + dequantize_mul_mat_vec_k<32, vec_dot_q6_k><<>>(vx, y, dst, ncols); +} + static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE; dequantize_block<32, 1, convert_f16><<>>(vx, y, k); @@ -353,6 +822,16 @@ static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) { return dequantize_row_q5_1_cuda; case GGML_TYPE_Q8_0: return dequantize_row_q8_0_cuda; + case GGML_TYPE_Q2_K: + return dequantize_row_q2_k_cuda; + case GGML_TYPE_Q3_K: + return dequantize_row_q3_k_cuda; + case GGML_TYPE_Q4_K: + return dequantize_row_q4_k_cuda; + case GGML_TYPE_Q5_K: + return dequantize_row_q5_k_cuda; + case GGML_TYPE_Q6_K: + return dequantize_row_q6_k_cuda; case GGML_TYPE_F16: return convert_fp16_to_fp32_cuda; default: @@ -372,6 +851,16 @@ static dequantize_mul_mat_vec_cuda_t ggml_get_dequantize_mul_mat_vec_cuda(ggml_t return dequantize_mul_mat_vec_q5_1_cuda; case GGML_TYPE_Q8_0: return dequantize_mul_mat_vec_q8_0_cuda; + case GGML_TYPE_Q2_K: + return dequantize_mul_mat_vec_q2_k_cuda; + case GGML_TYPE_Q3_K: + return dequantize_mul_mat_vec_q3_k_cuda; + case GGML_TYPE_Q4_K: + return dequantize_mul_mat_vec_q4_k_cuda; + case GGML_TYPE_Q5_K: + return dequantize_mul_mat_vec_q5_k_cuda; + case GGML_TYPE_Q6_K: + return dequantize_mul_mat_vec_q6_k_cuda; case GGML_TYPE_F16: return convert_mul_mat_vec_f16_cuda; default: @@ -790,12 +1279,14 @@ static void ggml_cuda_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0)); // compute + //printf("Calling dmmv\n"); dmmv(c_Q, c_Y, c_D, ne00, ne01, cudaStream); CUDA_CHECK(cudaGetLastError()); } else { // general dequantization kernel + cuBLAS matrix matrix multiplication float * c_X = d_X + i * x_ne; +//typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream); // convert src0 to fp32 on device to_fp32_cuda(c_Q, c_X, x_ne, cudaStream2); CUDA_CHECK(cudaGetLastError()); diff --git a/ggml-quants-k.c b/ggml-quants-k.c new file mode 100644 index 0000000..dec00d3 --- /dev/null +++ b/ggml-quants-k.c @@ -0,0 +1,2246 @@ +#include "ggml-quants-k.h" +#include "ggml.h" + +#include +#include +#include + +#ifdef __ARM_NEON + +// if YCM cannot find , make a symbolic link to it, for example: +// +// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/ +// +#include + +#else + +#ifdef __wasm_simd128__ +#include +#else +#ifdef __POWER9_VECTOR__ +#include +#undef bool +#define bool _Bool +#else +#if defined(_MSC_VER) || defined(__MINGW32__) +#include +#else +#if !defined(__riscv) +#include +#endif +#endif +#endif +#endif +#endif + +#undef MIN +#undef MAX +#define MIN(a, b) ((a) < (b) ? (a) : (b)) +#define MAX(a, b) ((a) > (b) ? (a) : (b)) + +// +// 2-6 bit quantization in super-blocks +// + + +// +// ===================== Helper functions +// +static inline int nearest_int(float fval) { + assert(fval <= 4194303.f); + float val = fval + 12582912.f; + int i; memcpy(&i, &val, sizeof(int)); + return (i & 0x007fffff) - 0x00400000; +} + +static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type) { + float max = 0; + float amax = 0; + for (int i = 0; i < n; ++i) { + float ax = fabsf(x[i]); + if (ax > amax) { amax = ax; max = x[i]; } + } + if (!amax) { // all zero + for (int i = 0; i < n; ++i) { + L[i] = 0; + } + return 0.f; + } + float iscale = -nmax / max; + if (rmse_type == 0) { + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale * x[i]); + L[i] = nmax + MAX(-nmax, MIN(nmax-1, l)); + } + return 1/iscale; + } + int weight_type = rmse_type%2; + float sumlx = 0; + float suml2 = 0; + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale * x[i]); + l = MAX(-nmax, MIN(nmax-1, l)); + L[i] = l + nmax; + float w = weight_type == 1 ? x[i] * x[i] : 1; + sumlx += w*x[i]*l; + suml2 += w*l*l; + } + float scale = sumlx/suml2; + float best = scale * sumlx; + for (int itry = 0; itry < 3; ++itry) { + iscale = 1/scale; + float slx = 0; + float sl2 = 0; + bool changed = false; + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale * x[i]); + l = MAX(-nmax, MIN(nmax-1, l)); + if (l + nmax != L[i]) { changed = true; } + float w = weight_type == 1 ? x[i] * x[i] : 1.f; + slx += w*x[i]*l; + sl2 += w*l*l; + } + if (!changed || sl2 == 0 || slx*slx <= best*sl2) { break; } + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale * x[i]); + L[i] = nmax + MAX(-nmax, MIN(nmax-1, l)); + } + sumlx = slx; suml2 = sl2; + scale = sumlx/suml2; + best = scale * sumlx; + } + for (int itry = 0; itry < 5; ++itry) { + int n_changed = 0; + for (int i = 0; i < n; ++i) { + float w = weight_type == 1 ? x[i]*x[i] : 1; + int l = L[i] - nmax; + float slx = sumlx - w*x[i]*l; + if (slx > 0) { + float sl2 = suml2 - w*l*l; + int new_l = nearest_int(x[i] * sl2 / slx); + new_l = MAX(-nmax, MIN(nmax-1, new_l)); + if (new_l != l) { + slx += w*x[i]*new_l; + sl2 += w*new_l*new_l; + if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) { + L[i] = nmax + new_l; sumlx = slx; suml2 = sl2; + scale = sumlx / suml2; best = scale * sumlx; + ++n_changed; + } + } + } + } + if (!n_changed) { break; } + } + if (rmse_type < 3) { + return scale; + } + for (int is = -4; is <= 4; ++is) { + if (is == 0) { + continue; + } + iscale = -(nmax + 0.1f*is) / max; + sumlx = suml2 = 0; + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale * x[i]); + l = MAX(-nmax, MIN(nmax-1, l)); + float w = weight_type == 1 ? x[i] * x[i] : 1; + sumlx += w*x[i]*l; + suml2 += w*l*l; + } + if (suml2 > 0 && sumlx*sumlx > best*suml2) { + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale * x[i]); + L[i] = nmax + MAX(-nmax, MIN(nmax-1, l)); + } + scale = sumlx/suml2; best = scale*sumlx; + } + } + return scale; +} + +static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) { + float max = 0; + float amax = 0; + for (int i = 0; i < n; ++i) { + float ax = fabsf(x[i]); + if (ax > amax) { amax = ax; max = x[i]; } + } + if (!amax) { // all zero + for (int i = 0; i < n; ++i) { L[i] = 0; } + return 0.f; + } + float iscale = -nmax / max; + if (do_rmse) { + float sumlx = 0; + float suml2 = 0; + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale * x[i]); + l = MAX(-nmax, MIN(nmax-1, l)); + L[i] = l; + float w = x[i]*x[i]; + sumlx += w*x[i]*l; + suml2 += w*l*l; + } + for (int itry = 0; itry < 5; ++itry) { + int n_changed = 0; + for (int i = 0; i < n; ++i) { + float w = x[i]*x[i]; + float slx = sumlx - w*x[i]*L[i]; + if (slx > 0) { + float sl2 = suml2 - w*L[i]*L[i]; + int new_l = nearest_int(x[i] * sl2 / slx); + new_l = MAX(-nmax, MIN(nmax-1, new_l)); + if (new_l != L[i]) { + slx += w*x[i]*new_l; + sl2 += w*new_l*new_l; + if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) { + L[i] = new_l; sumlx = slx; suml2 = sl2; + ++n_changed; + } + } + } + } + if (!n_changed) { + break; + } + } + for (int i = 0; i < n; ++i) { + L[i] += nmax; + } + return sumlx / suml2; + } + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale * x[i]); + l = MAX(-nmax, MIN(nmax-1, l)); + L[i] = l + nmax; + } + return 1/iscale; +} + +static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min, int ntry) { + float min = x[0]; + float max = x[0]; + for (int i = 1; i < n; ++i) { + if (x[i] < min) min = x[i]; + if (x[i] > max) max = x[i]; + } + if (max == min) { + for (int i = 0; i < n; ++i) L[i] = 0; + *the_min = 0; + return 0.f; + } + if (min > 0) min = 0; + float iscale = nmax/(max - min); + float scale = 1/iscale; + for (int itry = 0; itry < ntry; ++itry) { + float sumlx = 0; int suml2 = 0; + bool did_change = false; + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale*(x[i] - min)); + l = MAX(0, MIN(nmax, l)); + if (l != L[i]) { + L[i] = l; + did_change = true; + } + sumlx += (x[i] - min)*l; + suml2 += l*l; + } + scale = sumlx/suml2; + float sum = 0; + for (int i = 0; i < n; ++i) { + sum += x[i] - scale*L[i]; + } + min = sum/n; + if (min > 0) min = 0; + iscale = 1/scale; + if (!did_change) break; + } + *the_min = -min; + return scale; +} + +static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) { + if (j < 4) { + *d = q[j] & 63; *m = q[j + 4] & 63; + } else { + *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4); + *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4); + } +} + +//========================- 2-bit (de)-quantization + +void quantize_row_q2_k_reference(const float * restrict x, block_q2_k * restrict y, int k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + uint8_t L[QK_K]; + float mins[QK_K/16]; + float scales[QK_K/16]; + + const float q4scale = 15.f; + + for (int i = 0; i < nb; i++) { + + float max_scale = 0; // as we are deducting the min, scales are always positive + float max_min = 0; + for (int j = 0; j < QK_K/16; ++j) { + scales[j] = make_qkx1_quants(16, 3, x + 16*j, L + 16*j, &mins[j], 5); + float scale = scales[j]; + if (scale > max_scale) { + max_scale = scale; + } + float min = mins[j]; + if (min > max_min) { + max_min = min; + } + } + + if (max_scale > 0) { + float iscale = q4scale/max_scale; + for (int j = 0; j < QK_K/16; ++j) { + int l = nearest_int(iscale*scales[j]); + y[i].scales[j] = l; + } + y[i].d = ggml_fp32_to_fp16(max_scale/q4scale); + } else { + for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0; + y[i].d = ggml_fp32_to_fp16(0.f); + } + if (max_min > 0) { + float iscale = q4scale/max_min; + for (int j = 0; j < QK_K/16; ++j) { + int l = nearest_int(iscale*mins[j]); + y[i].scales[j] |= (l << 4); + } + y[i].dmin = ggml_fp32_to_fp16(max_min/q4scale); + } else { + y[i].dmin = ggml_fp32_to_fp16(0.f); + } + for (int j = 0; j < QK_K/16; ++j) { + const float d = ggml_fp16_to_fp32(y[i].d) * (y[i].scales[j] & 0xF); + if (!d) continue; + const float dm = ggml_fp16_to_fp32(y[i].dmin) * (y[i].scales[j] >> 4); + for (int ii = 0; ii < 16; ++ii) { + int l = nearest_int((x[16*j + ii] + dm)/d); + l = MAX(0, MIN(3, l)); + L[16*j + ii] = l; + } + } + + for (int j = 0; j < QK_K; j += 128) { + for (int l = 0; l < 32; ++l) { + y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6); + } + } + + x += QK_K; + + } +} + +void dequantize_row_q2_k(const block_q2_k * restrict x, float * restrict y, int k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + for (int i = 0; i < nb; i++) { + + const float d = ggml_fp16_to_fp32(x[i].d); + const float min = ggml_fp16_to_fp32(x[i].dmin); + + const uint8_t * q = x[i].qs; + + int is = 0; + float dl, ml; + for (int n = 0; n < QK_K; n += 128) { + int shift = 0; + for (int j = 0; j < 4; ++j) { + + uint8_t sc = x[i].scales[is++]; + dl = d * (sc & 0xF); ml = min * (sc >> 4); + for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml; + + sc = x[i].scales[is++]; + dl = d * (sc & 0xF); ml = min * (sc >> 4); + for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml; + + shift += 2; + } + q += 32; + } + + } +} + +void quantize_row_q2_k(const float * restrict x, void * restrict vy, int k) { + quantize_row_q2_k_reference(x, vy, k); +} + +size_t ggml_quantize_q2_k(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) { + const int nb = k / QK_K; + + // TODO - collect histograms - although, at a second thought, I don't really care about them + (void)hist; + + for (int j = 0; j < nb; j += k) { + block_q2_k * restrict y = (block_q2_k *)dst + j/QK_K; + quantize_row_q2_k_reference(src + j, y, k); + } + return (n/QK_K*sizeof(block_q2_k)); +} + +//========================= 3-bit (de)-quantization + +void quantize_row_q3_k_reference(const float * restrict x, block_q3_k * restrict y, int k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + int8_t L[QK_K]; + float scales[QK_K / 16]; + + for (int i = 0; i < nb; i++) { + + float max_scale = 0; + float amax = 0; + for (int j = 0; j < QK_K/16; ++j) { + scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true); + float scale = fabsf(scales[j]); + if (scale > amax) { + amax = scale; max_scale = scales[j]; + } + } + + memset(y[i].scales, 0, 12); + if (max_scale) { + float iscale = -32.f/max_scale; + for (int j = 0; j < QK_K/16; ++j) { + int8_t l = nearest_int(iscale*scales[j]); + l = MAX(-32, MIN(31, l)) + 32; + if (j < 8) { + y[i].scales[j] = l & 0xF; + } else { + y[i].scales[j-8] |= ((l & 0xF) << 4); + } + l >>= 4; + y[i].scales[j%4 + 8] |= (l << (2*(j/4))); + } + y[i].d = ggml_fp32_to_fp16(1/iscale); + } else { + y[i].d = ggml_fp32_to_fp16(0.f); + } + + int8_t sc; + for (int j = 0; j < QK_K/16; ++j) { + sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4; + sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32; + float d = ggml_fp16_to_fp32(y[i].d) * sc; + if (!d) { + continue; + } + for (int ii = 0; ii < 16; ++ii) { + int l = nearest_int(x[16*j + ii]/d); + l = MAX(-4, MIN(3, l)); + L[16*j + ii] = l + 4; + } + } + + memset(y[i].hmask, 0, QK_K/8); + // We put the high-bit for the 1st 32 quants into bit 0, the next 32 into bit 1, etc. + int m = 0; + uint8_t hm = 1; + for (int j = 0; j < QK_K; ++j) { + if (L[j] > 3) { + y[i].hmask[m] |= hm; + L[j] -= 4; + } + if (++m == QK_K/8) { + m = 0; hm <<= 1; + } + } + for (int j = 0; j < QK_K; j += 128) { + for (int l = 0; l < 32; ++l) { + y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6); + } + } + + x += QK_K; + } +} + +void dequantize_row_q3_k(const block_q3_k * restrict x, float * restrict y, int k) { + assert(k % QK_K == 0); + assert(QK_K == 256); + const int nb = k / QK_K; + + const uint32_t kmask1 = 0x03030303; + const uint32_t kmask2 = 0x0f0f0f0f; + + uint32_t aux[4]; + const int8_t * scales = (const int8_t*)aux; + + for (int i = 0; i < nb; i++) { + + const float d_all = ggml_fp16_to_fp32(x[i].d); + + const uint8_t * restrict q = x[i].qs; + const uint8_t * restrict hm = x[i].hmask; + uint8_t m = 1; + + memcpy(aux, x[i].scales, 12); + uint32_t tmp = aux[2]; + aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4); + aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4); + aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4); + aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4); + + int is = 0; + float dl; + for (int n = 0; n < QK_K; n += 128) { + int shift = 0; + for (int j = 0; j < 4; ++j) { + + dl = d_all * (scales[is++] - 32); + for (int l = 0; l < 16; ++l) { + *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4)); + } + + dl = d_all * (scales[is++] - 32); + for (int l = 0; l < 16; ++l) { + *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4)); + } + + shift += 2; + m <<= 1; + } + q += 32; + } + + } +} + +void quantize_row_q3_k(const float * restrict x, void * restrict vy, int k) { + quantize_row_q3_k_reference(x, vy, k); +} + +size_t ggml_quantize_q3_k(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) { + const int nb = k / QK_K; + + // TODO - collect histograms - although, at a second thought, I don't really care about them + (void)hist; + + for (int j = 0; j < nb; j += k) { + block_q3_k * restrict y = (block_q3_k *)dst + j/QK_K; + quantize_row_q3_k_reference(src + j, y, k); + } + return (n/QK_K*sizeof(block_q3_k)); +} + +// ====================== 4-bit (de)-quantization + +void quantize_row_q4_k_reference(const float * restrict x, block_q4_k * restrict y, int k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + uint8_t L[QK_K]; + float mins[QK_K/32]; + float scales[QK_K/32]; + + for (int i = 0; i < nb; i++) { + + float max_scale = 0; // as we are deducting the min, scales are always positive + float max_min = 0; + for (int j = 0; j < QK_K/32; ++j) { + scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 5); + float scale = scales[j]; + if (scale > max_scale) { + max_scale = scale; + } + float min = mins[j]; + if (min > max_min) { + max_min = min; + } + } + + float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f; + float inv_min = max_min > 0 ? 63.f/max_min : 0.f; + for (int j = 0; j < QK_K/32; ++j) { + uint8_t ls = nearest_int(inv_scale*scales[j]); + uint8_t lm = nearest_int(inv_min*mins[j]); + ls = MIN(63, ls); + lm = MIN(63, lm); + if (j < 4) { + y[i].scales[j] = ls; + y[i].scales[j+4] = lm; + } else { + y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4); + y[i].scales[j-4] |= ((ls >> 4) << 6); + y[i].scales[j-0] |= ((lm >> 4) << 6); + } + } + y[i].d = ggml_fp32_to_fp16(max_scale/63.f); + y[i].dmin = ggml_fp32_to_fp16(max_min/63.f); + + uint8_t sc, m; + for (int j = 0; j < QK_K/32; ++j) { + get_scale_min_k4(j, y[i].scales, &sc, &m); + const float d = ggml_fp16_to_fp32(y[i].d) * sc; + if (!d) continue; + const float dm = ggml_fp16_to_fp32(y[i].dmin) * m; + for (int ii = 0; ii < 32; ++ii) { + int l = nearest_int((x[32*j + ii] + dm)/d); + l = MAX(0, MIN(15, l)); + L[32*j + ii] = l; + } + } + uint8_t * q = y[i].qs; + for (int j = 0; j < QK_K; j += 64) { + for (int l = 0; l < 32; ++l) *q++ = L[j + l] | (L[j + l + 32] << 4); + } + + x += QK_K; + + } +} + +void dequantize_row_q4_k(const block_q4_k * restrict x, float * restrict y, int k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + for (int i = 0; i < nb; i++) { + + const float d = ggml_fp16_to_fp32(x[i].d); + const float min = ggml_fp16_to_fp32(x[i].dmin); + + const uint8_t * q = x[i].qs; + + int is = 0; + uint8_t sc, m; + for (int j = 0; j < QK_K; j += 64) { + get_scale_min_k4(is + 0, x[i].scales, &sc, &m); + const float d1 = d * sc; const float m1 = min * m; + get_scale_min_k4(is + 1, x[i].scales, &sc, &m); + const float d2 = d * sc; const float m2 = min * m; + for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1; + for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2; + q += 32; is += 2; + } + + } +} + +void quantize_row_q4_k(const float * restrict x, void * restrict vy, int k) { + assert(k % QK_K == 0); + block_q4_k * restrict y = vy; + quantize_row_q4_k_reference(x, y, k); +} + +size_t ggml_quantize_q4_k(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + (void)hist; // TODO: collect histograms + for (int j = 0; j < nb; j += k) { + block_q4_k * restrict y = (block_q4_k *)dst + j/QK_K; + quantize_row_q4_k_reference(src + j, y, k); + } + return (n/QK_K*sizeof(block_q4_k)); +} + +// ====================== 5-bit (de)-quantization + +void quantize_row_q5_k_reference(const float * restrict x, block_q5_k * restrict y, int k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + uint8_t L[QK_K]; + float mins[QK_K/32]; + float scales[QK_K/32]; + + for (int i = 0; i < nb; i++) { + + float max_scale = 0; // as we are deducting the min, scales are always positive + float max_min = 0; + for (int j = 0; j < QK_K/32; ++j) { + scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 5); + float scale = scales[j]; + if (scale > max_scale) { + max_scale = scale; + } + float min = mins[j]; + if (min > max_min) { + max_min = min; + } + } + + float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f; + float inv_min = max_min > 0 ? 63.f/max_min : 0.f; + for (int j = 0; j < QK_K/32; ++j) { + uint8_t ls = nearest_int(inv_scale*scales[j]); + uint8_t lm = nearest_int(inv_min*mins[j]); + ls = MIN(63, ls); + lm = MIN(63, lm); + if (j < 4) { + y[i].scales[j] = ls; + y[i].scales[j+4] = lm; + } else { + y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4); + y[i].scales[j-4] |= ((ls >> 4) << 6); + y[i].scales[j-0] |= ((lm >> 4) << 6); + } + } + y[i].d = ggml_fp32_to_fp16(max_scale/63.f); + y[i].dmin = ggml_fp32_to_fp16(max_min/63.f); + + uint8_t sc, m; + for (int j = 0; j < QK_K/32; ++j) { + get_scale_min_k4(j, y[i].scales, &sc, &m); + const float d = ggml_fp16_to_fp32(y[i].d) * sc; + if (!d) continue; + const float dm = ggml_fp16_to_fp32(y[i].dmin) * m; + for (int ii = 0; ii < 32; ++ii) { + int l = nearest_int((x[32*j + ii] + dm)/d); + l = MAX(0, MIN(31, l)); + L[32*j + ii] = l; + } + } + + uint8_t * restrict qh = y[i].qh; + uint8_t * restrict ql = y[i].qs; + memset(qh, 0, QK_K/8); + + uint8_t m1 = 1, m2 = 2; + for (int n = 0; n < QK_K; n += 64) { + for (int j = 0; j < 32; ++j) { + int l1 = L[n + j]; + if (l1 > 15) { + l1 -= 16; qh[j] |= m1; + } + int l2 = L[n + j + 32]; + if (l2 > 15) { + l2 -= 16; qh[j] |= m2; + } + ql[j] = l1 | (l2 << 4); + } + m1 <<= 2; m2 <<= 2; + ql += 32; + } + + x += QK_K; + + } +} + +void dequantize_row_q5_k(const block_q5_k * restrict x, float * restrict y, int k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + for (int i = 0; i < nb; i++) { + + const float d = ggml_fp16_to_fp32(x[i].d); + const float min = ggml_fp16_to_fp32(x[i].dmin); + + const uint8_t * ql = x[i].qs; + const uint8_t * qh = x[i].qh; + + int is = 0; + uint8_t sc, m; + uint8_t u1 = 1, u2 = 2; + for (int j = 0; j < QK_K; j += 64) { + get_scale_min_k4(is + 0, x[i].scales, &sc, &m); + const float d1 = d * sc; const float m1 = min * m; + get_scale_min_k4(is + 1, x[i].scales, &sc, &m); + const float d2 = d * sc; const float m2 = min * m; + for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1; + for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2; + ql += 32; is += 2; + u1 <<= 2; u2 <<= 2; + } + } +} + +void quantize_row_q5_k(const float * restrict x, void * restrict vy, int k) { + assert(k % QK_K == 0); + block_q5_k * restrict y = vy; + quantize_row_q5_k_reference(x, y, k); +} + +size_t ggml_quantize_q5_k(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + (void)hist; + for (int j = 0; j < nb; j += k) { + block_q5_k * restrict y = (block_q5_k *)dst + j/QK_K; + quantize_row_q5_k_reference(src + j, y, k); + } + return (n/QK_K*sizeof(block_q5_k)); +} + +// ====================== 6-bit (de)-quantization + +void quantize_row_q6_k_reference(const float * restrict x, block_q6_k * restrict y, int k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + int8_t L[QK_K]; + float scales[QK_K/16]; + + for (int i = 0; i < nb; i++) { + + float max_scale = 0; + float max_abs_scale = 0; + + for (int ib = 0; ib < QK_K/16; ++ib) { + + const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1); + scales[ib] = scale; + + const float abs_scale = fabsf(scale); + if (abs_scale > max_abs_scale) { + max_abs_scale = abs_scale; + max_scale = scale; + } + + } + + float iscale = -128.f/max_scale; + y[i].d = ggml_fp32_to_fp16(1/iscale); + for (int ib = 0; ib < QK_K/16; ++ib) { + y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib])); + } + + for (int j = 0; j < QK_K/16; ++j) { + float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j]; + if (!d) { + continue; + } + for (int ii = 0; ii < 16; ++ii) { + int l = nearest_int(x[16*j + ii]/d); + l = MAX(-32, MIN(31, l)); + L[16*j + ii] = l + 32; + } + } + + uint8_t * restrict ql = y[i].ql; + uint8_t * restrict qh = y[i].qh; + for (int j = 0; j < QK_K; j += 128) { + for (int l = 0; l < 32; ++l) { + const uint8_t q1 = L[j + l + 0] & 0xF; + const uint8_t q2 = L[j + l + 32] & 0xF; + const uint8_t q3 = L[j + l + 64] & 0xF; + const uint8_t q4 = L[j + l + 96] & 0xF; + ql[l+ 0] = q1 | (q3 << 4); + ql[l+32] = q2 | (q4 << 4); + qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6); + } + ql += 64; + qh += 32; + } + + x += QK_K; + + } +} + +void dequantize_row_q6_k(const block_q6_k * restrict x, float * restrict y, int k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + for (int i = 0; i < nb; i++) { + + const float d = ggml_fp16_to_fp32(x[i].d); + + const uint8_t * restrict ql = x[i].ql; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict sc = x[i].scales; + + for (int n = 0; n < QK_K; n += 128) { + for (int l = 0; l < 32; ++l) { + int is = l/16; + const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32; + const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32; + const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32; + const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32; + y[l + 0] = d * sc[is + 0] * q1; + y[l + 32] = d * sc[is + 2] * q2; + y[l + 64] = d * sc[is + 4] * q3; + y[l + 96] = d * sc[is + 6] * q4; + } + y += 128; + ql += 64; + qh += 32; + sc += 8; + } + + } +} + +void quantize_row_q6_k(const float * restrict x, void * restrict vy, int k) { + assert(k % QK_K == 0); + block_q6_k * restrict y = vy; + quantize_row_q6_k_reference(x, y, k); +} + +size_t ggml_quantize_q6_k(const float * src, void * dst, int n, int k, int64_t * hist) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + (void)hist; // TODO + + for (int j = 0; j < nb; j += k) { + block_q6_k * restrict y = (block_q6_k *)dst + j/QK_K; + quantize_row_q6_k_reference(src + j, y, k); + } + return (n/QK_K*sizeof(block_q6_k)); +} + +//===================================== Q8_K ============================================== + +void quantize_row_q8_k_reference(const float * restrict x, block_q8_k * restrict y, int k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + for (int i = 0; i < nb; i++) { + + float max = 0; + float amax = 0; + for (int j = 0; j < QK_K; ++j) { + float ax = fabsf(x[j]); + if (ax > amax) { + amax = ax; max = x[j]; + } + } + if (!amax) { + y[i].d = 0; + memset(y[i].qs, 0, QK_K); + x += QK_K; + continue; + } + const float iscale = -128.f/max; + for (int j = 0; j < QK_K; ++j) { + int v = nearest_int(iscale*x[j]); + y[i].qs[j] = MIN(127, v); + } + for (int j = 0; j < QK_K/16; ++j) { + int sum = 0; + for (int ii = 0; ii < 16; ++ii) { + sum += y[i].qs[j*16 + ii]; + } + y[i].bsums[j] = sum; + } + y[i].d = 1/iscale; + x += QK_K; + } +} + +void dequantize_row_q8_k(const block_q8_k * restrict x, float * restrict y, int k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + for (int i = 0; i < nb; i++) { + for (int j = 0; j < QK_K; ++j) { + *y++ = x[i].d * x[i].qs[j]; + } + } +} + +void quantize_row_q8_k(const float * restrict x, void * restrict y, int k) { + quantize_row_q8_k_reference(x, y, k); +} + +//===================================== Dot ptoducts ================================= + +// +// Helper functions +// +#if __AVX__ || __AVX2__ || __AVX512F__ + +// horizontally add 8 floats +static inline float hsum_float_8(const __m256 x) { + __m128 res = _mm256_extractf128_ps(x, 1); + res = _mm_add_ps(res, _mm256_castps256_ps128(x)); + res = _mm_add_ps(res, _mm_movehl_ps(res, res)); + res = _mm_add_ss(res, _mm_movehdup_ps(res)); + return _mm_cvtss_f32(res); +} + +// shuffles to pick the required scales in dot products +static inline __m256i get_scale_shuffle_q3k(int i) { + static const uint8_t k_shuffle[128] = { + 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, + 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, + 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11, + 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15, + }; + return _mm256_loadu_si256((const __m256i*)k_shuffle + i); +} +static inline __m256i get_scale_shuffle_k4(int i) { + static const uint8_t k_shuffle[256] = { + 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, + 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, + 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, + 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, + 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, + 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11, + 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, + 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15 + }; + return _mm256_loadu_si256((const __m256i*)k_shuffle + i); +} +static inline __m128i get_scale_shuffle(int i) { + static const uint8_t k_shuffle[128] = { + 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, + 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, + 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, + 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, + 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, + 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11, + 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13, + 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15 + }; + return _mm_loadu_si128((const __m128i*)k_shuffle + i); +} +#endif + +void ggml_vec_dot_q2_k_q8_k(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + + const block_q2_k * restrict x = vx; + const block_q8_k * restrict y = vy; + + const int nb = n / QK_K; + +#ifdef __ARM_NEON + + const uint8x16_t m3 = vdupq_n_u8(0x3); + const uint8x16_t m4 = vdupq_n_u8(0xF); + const int32x4_t vzero = vdupq_n_s32(0); + + int8x16x2_t q2bytes; + uint8_t aux[16]; + + float sum = 0; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); + const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin); + + const uint8_t * restrict q2 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + const uint8_t * restrict sc = x[i].scales; + + const uint8x16_t mins_and_scales = vld1q_u8(sc); + const uint8x16_t scales = vandq_u8(mins_and_scales, m4); + vst1q_u8(aux, scales); + + const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4); + const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums); + const int16x8x2_t mins16 = {vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))}; + const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])), + vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0]))); + const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])), + vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1]))); + sum += dmin * vaddvq_s32(vaddq_s32(s0, s1)); + + int isum = 0; + int is = 0; + +// We use this macro instead of a function call because for some reason +// the code runs 2-3% slower, even if the function is declared inline +#if defined(__ARM_FEATURE_DOTPROD) +#define MULTIPLY_ACCUM_WITH_SCALE(index)\ + isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\ + isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)]; +#else +#define MULTIPLY_ACCUM_WITH_SCALE(index)\ + {\ + const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),\ + vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));\ + const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),\ + vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));\ + isum += vaddvq_s16(p1) * aux[is+(index)] + vaddvq_s16(p2) * aux[is+1+(index)];\ + } +#endif + +#define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\ + q8bytes = vld1q_s8_x2(q8); q8 += 32;\ + q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\ + q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\ + MULTIPLY_ACCUM_WITH_SCALE((index)); + + + for (int j = 0; j < QK_K/128; ++j) { + + const uint8x16x2_t q2bits = vld1q_u8_x2(q2); q2 += 32; + + int8x16x2_t q8bytes = vld1q_s8_x2(q8); q8 += 32; + q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3)); + q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3)); + MULTIPLY_ACCUM_WITH_SCALE(0); + + SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2); + + SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4); + + SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6); + + is += 8; + } + sum += d * isum; + + } + + *s = sum; + +#elif defined __AVX2__ + + const __m256i m3 = _mm256_set1_epi8(3); + const __m128i m4 = _mm_set1_epi8(0xF); + + __m256 acc = _mm256_setzero_ps(); + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); + const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin); + + const uint8_t * restrict q2 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales); + const __m128i scales8 = _mm_and_si128(mins_and_scales, m4); + const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4); + const __m256i mins = _mm256_cvtepi8_epi16(mins8); + const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums)); + + acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc); + + const __m256i all_scales = _mm256_cvtepi8_epi16(scales8); + const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0); + const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1); + const __m256i scales[2] = {_mm256_set_m128i(l_scales, l_scales), _mm256_set_m128i(h_scales, h_scales)}; + + __m256i sumi = _mm256_setzero_si256(); + + for (int j = 0; j < QK_K/128; ++j) { + + const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32; + + const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + + const __m256i q2_0 = _mm256_and_si256(q2bits, m3); + const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3); + const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3); + const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3); + + __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0); + __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1); + __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2); + __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3); + + p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0); + p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1); + p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2); + p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3); + + p0 = _mm256_add_epi32(p0, p1); + p2 = _mm256_add_epi32(p2, p3); + + sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2)); + } + + acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc); + + } + + *s = hsum_float_8(acc); + +#else + + float sumf = 0; + + for (int i = 0; i < nb; ++i) { + + const uint8_t * q2 = x[i].qs; + const int8_t * q8 = y[i].qs; + const uint8_t * sc = x[i].scales; + + int summs = 0; + for (int j = 0; j < 16; ++j) { + summs += y[i].bsums[j] * (sc[j] >> 4); + } + + const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d); + const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin); + + int isum = 0; + int is = 0; + int d; + for (int k = 0; k < QK_K/128; ++k) { + int shift = 0; + for (int j = 0; j < 4; ++j) { + d = sc[is++] & 0xF; + int isuml = 0; + for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3); + isum += d * isuml; + d = sc[is++] & 0xF; + isuml = 0; + for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3); + isum += d * isuml; + shift += 2; + q8 += 32; + } + q2 += 32; + } + sumf += dall * isum - dmin * summs; + } + *s = sumf; +#endif +} + +void ggml_vec_dot_q3_k_q8_k(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + assert(n % QK_K == 0); + + const uint32_t kmask1 = 0x03030303; + const uint32_t kmask2 = 0x0f0f0f0f; + + const block_q3_k * restrict x = vx; + const block_q8_k * restrict y = vy; + + const int nb = n / QK_K; + +#ifdef __ARM_NEON + + uint32_t aux[3]; + uint32_t utmp[4]; + + const uint8x16_t m3b = vdupq_n_u8(0x3); +#ifdef __ARM_FEATURE_DOTPROD + const int32x4_t vzero = vdupq_n_s32(0); +#endif + + const uint8x16_t m0 = vdupq_n_u8(1); + const uint8x16_t m1 = vshlq_n_u8(m0, 1); + const uint8x16_t m2 = vshlq_n_u8(m0, 2); + const uint8x16_t m3 = vshlq_n_u8(m0, 3); + const int8_t m32 = 32; + + int8x16x4_t q3bytes; + + float sum = 0; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); + + const uint8_t * restrict q3 = x[i].qs; + const uint8_t * restrict qh = x[i].hmask; + const int8_t * restrict q8 = y[i].qs; + + uint8x16x2_t qhbits = vld1q_u8_x2(qh); + + uint8x16x4_t q3h; + + int32_t isum = 0; + + // Set up scales + memcpy(aux, x[i].scales, 12); + utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4); + utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4); + utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4); + utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4); + + int8_t * scale = (int8_t *)utmp; + for (int j = 0; j < 16; ++j) scale[j] -= m32; + + for (int j = 0; j < QK_K/128; ++j) { + + const uint8x16x2_t q3bits = vld1q_u8_x2(q3); q3 += 32; + const int8x16x4_t q8bytes_1 = vld1q_s8_x4(q8); q8 += 64; + const int8x16x4_t q8bytes_2 = vld1q_s8_x4(q8); q8 += 64; + + q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2); + q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2); + q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1); + q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1); + + q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0])); + q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1])); + q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2])); + q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3])); + +#if defined(__ARM_FEATURE_DOTPROD) + isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0]; + isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1]; + isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2]; + isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3]; +#else + int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_1.val[0])), + vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_1.val[0]))); + int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_1.val[1])), + vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_1.val[1]))); + int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_1.val[2])), + vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_1.val[2]))); + int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_1.val[3])), + vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_1.val[3]))); + isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3]; +#endif + scale += 4; + + q3h.val[0] = vbicq_u8(m2, qhbits.val[0]); + q3h.val[1] = vbicq_u8(m2, qhbits.val[1]); + q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1); + q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1); + + q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0])); + q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1])); + q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2])); + q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3])); + +#if defined(__ARM_FEATURE_DOTPROD) + isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0]; + isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1]; + isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2]; + isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3]; +#else + p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_2.val[0])), + vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_2.val[0]))); + p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_2.val[1])), + vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_2.val[1]))); + p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_2.val[2])), + vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_2.val[2]))); + p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_2.val[3])), + vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_2.val[3]))); + isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3]; +#endif + scale += 4; + + if (j == 0) { + qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4); + qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4); + } + + } + sum += d * isum; + + } + + *s = sum; + +#elif defined __AVX2__ + + const __m256i m3 = _mm256_set1_epi8(3); + const __m256i mone = _mm256_set1_epi8(1); + const __m128i m32 = _mm_set1_epi8(32); + + __m256 acc = _mm256_setzero_ps(); + + uint32_t aux[3]; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); + + const uint8_t * restrict q3 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + // Set up scales + memcpy(aux, x[i].scales, 12); + __m128i scales128 = _mm_set_epi32( + ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4), + ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4), + (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4), + (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4)); + scales128 = _mm_sub_epi8(scales128, m32); + const __m256i all_scales = _mm256_cvtepi8_epi16(scales128); + const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0); + const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1); + const __m256i scales[2] = {_mm256_set_m128i(l_scales, l_scales), _mm256_set_m128i(h_scales, h_scales)}; + + // high bit + const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask); + + // integer accumulator + __m256i sumi = _mm256_setzero_si256(); + + int bit = 0; + int is = 0; + + for (int j = 0; j < QK_K/128; ++j) { + // load low 2 bits + const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32; + + // prepare low and high bits + const __m256i q3l_0 = _mm256_and_si256(q3bits, m3); + const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2); + ++bit; + + const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3); + const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2); + ++bit; + + const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3); + const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2); + ++bit; + + const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3); + const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2); + ++bit; + + // load Q8 quants + const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + + // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16, + // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set, + // and 2 if the high bit was set) + __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0); + __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1); + __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2); + __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3); + + __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0); + __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1); + __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2); + __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3); + + p16_0 = _mm256_sub_epi16(p16_0, q8s_0); + p16_1 = _mm256_sub_epi16(p16_1, q8s_1); + p16_2 = _mm256_sub_epi16(p16_2, q8s_2); + p16_3 = _mm256_sub_epi16(p16_3, q8s_3); + + // multiply with scales + p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0); + p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1); + p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2); + p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3); + + // accumulate + p16_0 = _mm256_add_epi32(p16_0, p16_1); + p16_2 = _mm256_add_epi32(p16_2, p16_3); + sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2)); + + } + + // multiply with block scale and accumulate + acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc); + + } + + *s = hsum_float_8(acc); + +#else + // scalar version + // This function is written like this so the compiler can manage to vectorize most of it + // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the + // manually vectorized version above. Every other version I tried would run at least 4 times slower. + // The ideal situation would be if we could just write the code once, and the compiler would + // automatically produce the best possible set of machine instructions, instead of us having to manually + // write vectorized versions for AVX, ARM_NEON, etc. + + int8_t aux8[QK_K]; + int16_t aux16[8]; + float sums [8]; + int32_t aux32[8]; + memset(sums, 0, 8*sizeof(float)); + + uint32_t auxs[4]; + const int8_t * scales = (const int8_t*)auxs; + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + const uint8_t * restrict q3 = x[i].qs; + const uint8_t * restrict hm = x[i].hmask; + const int8_t * restrict q8 = y[i].qs; + memset(aux32, 0, 8*sizeof(int32_t)); + int8_t * restrict a = aux8; + uint8_t m = 1; + for (int j = 0; j < QK_K; j += 128) { + for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3; + for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4); + a += 32; m <<= 1; + for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3; + for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4); + a += 32; m <<= 1; + for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3; + for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4); + a += 32; m <<= 1; + for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3; + for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4); + a += 32; m <<= 1; + q3 += 32; + } + a = aux8; + + memcpy(auxs, x[i].scales, 12); + uint32_t tmp = auxs[2]; + auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4); + auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4); + auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4); + auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4); + for (int j = 0; j < QK_K/16; ++j) { + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l]; + q8 += 8; a += 8; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l]; + q8 += 8; a += 8; + } + const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d; + for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; + } + for (int l = 0; l < 8; ++l) sumf += sums[l]; + *s = sumf; + +#endif + +} + +void ggml_vec_dot_q4_k_q8_k(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + assert(n % QK_K == 0); + + const block_q4_k * restrict x = vx; + const block_q8_k * restrict y = vy; + + const int nb = n / QK_K; + + static const uint32_t kmask1 = 0x3f3f3f3f; + static const uint32_t kmask2 = 0x0f0f0f0f; + static const uint32_t kmask3 = 0x03030303; + + uint32_t utmp[4]; + +#ifdef __ARM_NEON + + const uint8x16_t m4b = vdupq_n_u8(0xf); +#ifdef __ARM_FEATURE_DOTPROD + const uint32x4_t mzero = vdupq_n_s32(0); +#endif + + int8x16x2_t q4bytes; + int8x16x2_t q8bytes; + + float sumf = 0; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); + const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin); + + const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8)); + + memcpy(utmp, x[i].scales, 12); + + const uint32x2_t mins8 = {utmp[1] & kmask1, ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4)}; + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); + utmp[0] &= kmask1; + + const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8))); + const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)), + vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins))); + sumf -= dmin * vaddvq_s32(prod); + + const uint8_t * scales = (const uint8_t *)utmp; + + const uint8_t * restrict q4 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + //int32x4_t isum = mzero; + + int32_t sumi1 = 0; + int32_t sumi2 = 0; + + for (int j = 0; j < QK_K/64; ++j) { + + const uint8x16x2_t q4bits = vld1q_u8_x2(q4); q4 += 32; + +#ifdef __ARM_FEATURE_DOTPROD + q8bytes = vld1q_s8_x2(q8); q8 += 32; + q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b)); + q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b)); + + const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]); + sumi1 += vaddvq_s32(p1) * scales[2*j+0]; + + q8bytes = vld1q_s8_x2(q8); q8 += 32; + q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4)); + q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4)); + + const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]); + + sumi2 += vaddvq_s32(p2) * scales[2*j+1]; +#else + q8bytes = vld1q_s8_x2(q8); q8 += 32; + q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b)); + q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b)); + const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])), + vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0]))); + const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])), + vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1]))); + sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) * scales[2*j+0]; + + q8bytes = vld1q_s8_x2(q8); q8 += 32; + q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4)); + q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4)); + const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])), + vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0]))); + const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])), + vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1]))); + sumi2 += vaddvq_s16(vaddq_s16(p2, p3)) * scales[2*j+1]; + +#endif + } + + sumf += d * (sumi1 + sumi2); + + } + + *s = sumf; + +#elif defined __AVX2__ + + const __m256i m4 = _mm256_set1_epi8(0xF); + + __m256 acc = _mm256_setzero_ps(); + __m128 acc_m = _mm_setzero_ps(); + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); + const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin); + + const uint8_t * restrict q4 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + memcpy(utmp, x[i].scales, 12); + utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); + const uint32_t uaux = utmp[1] & kmask1; + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); + utmp[2] = uaux; + utmp[0] &= kmask1; + + const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0])); + + const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums); + const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1)); + const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s); + acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m); + + const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0); + const __m256i scales = _mm256_set_m128i(sc128, sc128); + + __m256i sumi = _mm256_setzero_si256(); + + for (int j = 0; j < QK_K/64; ++j) { + + const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0)); + const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1)); + + const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32; + const __m256i q4l = _mm256_and_si256(q4bits, m4); + const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4); + + const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + __m256i p16l = _mm256_maddubs_epi16(q4l, q8l); + p16l = _mm256_madd_epi16(scale_l, p16l); + sumi = _mm256_add_epi32(sumi, p16l); + + const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + __m256i p16h = _mm256_maddubs_epi16(q4h, q8h); + p16h = _mm256_madd_epi16(scale_h, p16h); + sumi = _mm256_add_epi32(sumi, p16h); + + } + + __m256 vd = _mm256_set1_ps(d); + acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc); + + } + + acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m)); + acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m)); + + *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m); + +#else + + + const uint8_t * scales = (const uint8_t*)&utmp[0]; + const uint8_t * mins = (const uint8_t*)&utmp[2]; + + int8_t aux8[QK_K]; + int16_t aux16[8]; + float sums [8]; + int32_t aux32[8]; + memset(sums, 0, 8*sizeof(float)); + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + const uint8_t * restrict q4 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + memset(aux32, 0, 8*sizeof(int32_t)); + int8_t * restrict a = aux8; + for (int j = 0; j < QK_K/64; ++j) { + for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF); + a += 32; + for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4); + a += 32; q4 += 32; + } + memcpy(utmp, x[i].scales, 12); + utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); + const uint32_t uaux = utmp[1] & kmask1; + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); + utmp[2] = uaux; + utmp[0] &= kmask1; + + int sumi = 0; + for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2]; + a = aux8; + int is = 0; + for (int j = 0; j < QK_K/32; ++j) { + int32_t scale = scales[is++]; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; + q8 += 8; a += 8; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; + q8 += 8; a += 8; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; + q8 += 8; a += 8; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; + q8 += 8; a += 8; + } + const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d; + for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; + const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d; + sumf -= dmin * sumi; + } + for (int l = 0; l < 8; ++l) sumf += sums[l]; + *s = sumf; +#endif +} + +void ggml_vec_dot_q5_k_q8_k(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + assert(n % QK_K == 0); + + const block_q5_k * restrict x = vx; + const block_q8_k * restrict y = vy; + + const int nb = n / QK_K; + + static const uint32_t kmask1 = 0x3f3f3f3f; + static const uint32_t kmask2 = 0x0f0f0f0f; + static const uint32_t kmask3 = 0x03030303; + + uint32_t utmp[4]; + + +#ifdef __ARM_NEON + + const uint8x16_t m4b = vdupq_n_u8(0xf); + const uint32x4_t mzero = vdupq_n_u32(0); + const uint8x16_t mone = vdupq_n_u8(1); + const uint8x16_t mtwo = vdupq_n_u8(2); + + int8x16x4_t q5bytes; + + float sumf = 0; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); + const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin); + + const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8)); + + memcpy(utmp, x[i].scales, 12); + utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); + const uint32_t uaux = utmp[1] & kmask1; + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); + utmp[2] = uaux; + utmp[0] &= kmask1; + + const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8); + const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8)); + const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)), + vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins))); + int32_t sumi_mins = vaddvq_s32(prod); + + const uint8_t * scales = (const uint8_t *)utmp; + + const uint8_t * restrict q5 = x[i].qs; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + + uint8x16x2_t qhbits = vld1q_u8_x2(qh); + + uint8x16x4_t q5h; + + int32_t sumi = 0; + + for (int j = 0; j < QK_K/64; ++j) { + + const uint8x16x2_t q5bits = vld1q_u8_x2(q5); q5 += 32; + const int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64; + + q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4); + q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4); + q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3); + q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3); + qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2); + qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2); + + q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0])); + q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1])); + q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2])); + q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3])); + +#if defined(__ARM_FEATURE_DOTPROD) + + sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++; + sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++; +#else + + const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])), + vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0]))); + const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])), + vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1]))); + sumi += vaddvq_s16(vaddq_s16(p0, p1)) * *scales++; + + const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])), + vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2]))); + const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])), + vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3]))); + sumi += vaddvq_s16(vaddq_s16(p2, p3)) * *scales++; +#endif + } + + sumf += d * sumi - dmin * sumi_mins; + + } + + *s = sumf; + +#elif defined __AVX2__ + + const __m256i m4 = _mm256_set1_epi8(0xF); + const __m128i mzero = _mm_setzero_si128(); + const __m256i mone = _mm256_set1_epi8(1); + + __m256 acc = _mm256_setzero_ps(); + + float summs = 0.f; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); + const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin); + + const uint8_t * restrict q5 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + memcpy(utmp, x[i].scales, 12); + utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); + const uint32_t uaux = utmp[1] & kmask1; + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); + utmp[2] = uaux; + utmp[0] &= kmask1; + + const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0])); + + const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums); + const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1)); + const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s); + const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero); + summs += dmin * _mm_extract_epi32(hsum, 0); + + const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0); + const __m256i scales = _mm256_set_m128i(sc128, sc128); + + const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh); + __m256i hmask = mone; + + __m256i sumi = _mm256_setzero_si256(); + + int bit = 0; + + for (int j = 0; j < QK_K/64; ++j) { + + const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0)); + const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1)); + + const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32; + + const __m256i q5l_0 = _mm256_and_si256(q5bits, m4); + const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4); + const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0); + hmask = _mm256_slli_epi16(hmask, 1); + + const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4); + const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4); + const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1); + hmask = _mm256_slli_epi16(hmask, 1); + + const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + + __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0); + __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1); + + p16_0 = _mm256_madd_epi16(scale_0, p16_0); + p16_1 = _mm256_madd_epi16(scale_1, p16_1); + + sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1)); + + } + + __m256 vd = _mm256_set1_ps(d); + acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc); + + } + + *s = hsum_float_8(acc) + summs; + +#else + + const uint8_t * scales = (const uint8_t*)&utmp[0]; + const uint8_t * mins = (const uint8_t*)&utmp[2]; + + int8_t aux8[QK_K]; + int16_t aux16[8]; + float sums [8]; + int32_t aux32[8]; + memset(sums, 0, 8*sizeof(float)); + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + const uint8_t * restrict q4 = x[i].qs; + const uint8_t * restrict hm = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + memset(aux32, 0, 8*sizeof(int32_t)); + int8_t * restrict a = aux8; + uint8_t m = 1; + for (int j = 0; j < QK_K/64; ++j) { + for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF); + for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0); + a += 32; m <<= 1; + for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4); + for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0); + a += 32; m <<= 1; + q4 += 32; + } + memcpy(utmp, x[i].scales, 12); + utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); + const uint32_t uaux = utmp[1] & kmask1; + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); + utmp[2] = uaux; + utmp[0] &= kmask1; + + int sumi = 0; + for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2]; + a = aux8; + int is = 0; + for (int j = 0; j < QK_K/32; ++j) { + int32_t scale = scales[is++]; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; + q8 += 8; a += 8; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; + q8 += 8; a += 8; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; + q8 += 8; a += 8; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; + q8 += 8; a += 8; + } + const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d; + for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; + const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d; + sumf -= dmin * sumi; + } + for (int l = 0; l < 8; ++l) sumf += sums[l]; + *s = sumf; +#endif +} + + + +void ggml_vec_dot_q6_k_q8_k(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { + assert(n % QK_K == 0); + + const block_q6_k * restrict x = vx; + const block_q8_k * restrict y = vy; + + const int nb = n / QK_K; + +#ifdef __ARM_NEON + + float sum = 0; + + const uint8x16_t m4b = vdupq_n_u8(0xF); + const int32x4_t vzero = vdupq_n_s32(0); + //const int8x16_t m32s = vdupq_n_s8(32); + + const uint8x16_t mone = vdupq_n_u8(3); + + int8x16x4_t q6bytes; + uint8x16x4_t q6h; + + for (int i = 0; i < nb; ++i) { + + const float d_all = ggml_fp16_to_fp32(x[i].d); + + const uint8_t * restrict q6 = x[i].ql; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + + const int8_t * restrict scale = x[i].scales; + + const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums); + const int8x16_t scales = vld1q_s8(scale); + const int16x8x2_t q6scales = {vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))}; + + const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])), + vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))), + vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])), + vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1])))); + int32_t isum_mins = vaddvq_s32(prod); + + int32_t isum = 0; + + for (int j = 0; j < QK_K/128; ++j) { + + uint8x16x2_t qhbits = vld1q_u8_x2(qh); qh += 32; + uint8x16x4_t q6bits = vld1q_u8_x4(q6); q6 += 64; + int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64; + + q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4); + q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4); + uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2); + q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4); + shifted = vshrq_n_u8(qhbits.val[1], 2); + q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4); + + //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s); + //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s); + //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s); + //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s); + q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])); + q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])); + q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])); + q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])); + +#if defined(__ARM_FEATURE_DOTPROD) + + isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] + + vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] + + vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] + + vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3]; + scale += 4; + +#else + + int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])), + vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0]))); + int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])), + vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1]))); + isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1]; + scale += 2; + + int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])), + vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2]))); + int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])), + vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3]))); + isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1]; + scale += 2; +#endif + + q8bytes = vld1q_s8_x4(q8); q8 += 64; + + shifted = vshrq_n_u8(qhbits.val[0], 4); + q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4); + shifted = vshrq_n_u8(qhbits.val[1], 4); + q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4); + shifted = vshrq_n_u8(qhbits.val[0], 6); + q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4); + shifted = vshrq_n_u8(qhbits.val[1], 6); + q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4); + + //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s); + //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s); + //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s); + //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s); + q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])); + q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])); + q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])); + q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])); + +#if defined(__ARM_FEATURE_DOTPROD) + + isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] + + vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] + + vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] + + vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3]; + scale += 4; + + //for (int l = 0; l < 4; ++l) { + // const int32x4_t p = vdotq_s32(vzero, q6bytes.val[l], q8bytes.val[l]); + // isum += vaddvq_s32(p) * *scale++; + //} +#else + p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])), + vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0]))); + p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])), + vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1]))); + isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1]; + scale += 2; + + p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])), + vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2]))); + p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])), + vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3]))); + isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1]; + scale += 2; +#endif + + } + //sum += isum * d_all * y[i].d; + sum += d_all * y[i].d * (isum - 32 * isum_mins); + + } + *s = sum; + +#elif defined __AVX2__ + + const __m256i m4 = _mm256_set1_epi8(0xF); + const __m256i m2 = _mm256_set1_epi8(3); + const __m256i m32s = _mm256_set1_epi8(32); + + __m256 acc = _mm256_setzero_ps(); + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * ggml_fp16_to_fp32(x[i].d); + + const uint8_t * restrict q4 = x[i].ql; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + + const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales); + + __m256i sumi = _mm256_setzero_si256(); + + int is = 0; + + for (int j = 0; j < QK_K/128; ++j) { + + const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0)); + const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1)); + const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2)); + const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3)); + is += 4; + + const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32; + const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32; + const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32; + + const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4); + const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4); + const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4); + const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4); + + const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0); + const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1); + const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2); + const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3); + + const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + + __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0); + __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1); + __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2); + __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3); + + __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0); + __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1); + __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2); + __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3); + + p16_0 = _mm256_sub_epi16(p16_0, q8s_0); + p16_1 = _mm256_sub_epi16(p16_1, q8s_1); + p16_2 = _mm256_sub_epi16(p16_2, q8s_2); + p16_3 = _mm256_sub_epi16(p16_3, q8s_3); + + p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0); + p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1); + p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2); + p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3); + + sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1)); + sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3)); + + } + + acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc); + } + + *s = hsum_float_8(acc); + +#else + + int8_t aux8[QK_K]; + int16_t aux16[8]; + float sums [8]; + int32_t aux32[8]; + memset(sums, 0, 8*sizeof(float)); + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + const uint8_t * restrict q4 = x[i].ql; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + memset(aux32, 0, 8*sizeof(int32_t)); + int8_t * restrict a = aux8; + for (int j = 0; j < QK_K; j += 128) { + for (int l = 0; l < 32; ++l) { + a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32; + a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32; + a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32; + a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32; + } + a += 128; + q4 += 64; + qh += 32; + } + a = aux8; + int is = 0; + for (int j = 0; j < QK_K/16; ++j) { + int scale = x[i].scales[is++]; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; + q8 += 8; a += 8; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; + q8 += 8; a += 8; + } + const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d; + for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; + } + for (int l = 0; l < 8; ++l) sumf += sums[l]; + *s = sumf; +#endif +} + + diff --git a/ggml-quants-k.h b/ggml-quants-k.h new file mode 100644 index 0000000..d6f0601 --- /dev/null +++ b/ggml-quants-k.h @@ -0,0 +1,122 @@ +#pragma once + +#include "ggml.h" + +#include +#include +#include + +// Super-block size +#define QK_K 256 + +// +// Super-block quantization structures +// + +// 2-bit quantization +// weight is represented as x = a * q + b +// 16 blocks of 16 elemenets each +// Effectively 2.5625 bits per weight +typedef struct { + uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits + uint8_t qs[QK_K/4]; // quants + ggml_fp16_t d; // super-block scale for quantized scales + ggml_fp16_t dmin; // super-block scale for quantized mins +} block_q2_k; +static_assert(sizeof(block_q2_k) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_k block size/padding"); + +// 3-bit quantization +// weight is represented as x = a * q +// 16 blocks of 16 elemenets each +// Effectively 3.4375 bits per weight +typedef struct { + uint8_t hmask[QK_K/8]; // quants - high bit + uint8_t qs[QK_K/4]; // quants - low 2 bits + uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits + ggml_fp16_t d; // super-block scale +} block_q3_k; +static_assert(sizeof(block_q3_k) == sizeof(ggml_fp16_t) + QK_K / 4 + 11 * QK_K / 64, "wrong q3_k block size/padding"); + +// 4-bit quantization +// 16 blocks of 32 elements each +// weight is represented as x = a * q + b +// Effectively 4.5 bits per weight +typedef struct { + ggml_fp16_t d; // super-block scale for quantized scales + ggml_fp16_t dmin; // super-block scale for quantized mins + uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits + uint8_t qs[QK_K/2]; // 4--bit quants +} block_q4_k; +static_assert(sizeof(block_q4_k) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_k block size/padding"); + +// 5-bit quantization +// 16 blocks of 32 elements each +// weight is represented as x = a * q + b +// Effectively 5.5 bits per weight +typedef struct { + ggml_fp16_t d; // super-block scale for quantized scales + ggml_fp16_t dmin; // super-block scale for quantized mins + uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits + uint8_t qh[QK_K/8]; // quants, high bit + uint8_t qs[QK_K/2]; // quants, low 4 bits +} block_q5_k; +static_assert(sizeof(block_q5_k) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2 + QK_K/8, "wrong q5_k block size/padding"); + +// 6-bit quantization +// weight is represented as x = a * q +// 16 blocks of 16 elemenets each +// Effectively 6.5625 bits per weight +typedef struct { + uint8_t ql[QK_K/2]; // quants, lower 4 bits + uint8_t qh[QK_K/4]; // quants, upper 2 bits + int8_t scales[QK_K/16]; // scales, quantized with 8 bits + ggml_fp16_t d; // super-block scale +} block_q6_k; +static_assert(sizeof(block_q6_k) == sizeof(ggml_fp16_t) + QK_K / 16 + 3*QK_K/4, "wrong q6_k block size/padding"); + +// This is only used for intermediate quantization and dot products +typedef struct { + float d; // delta + int8_t qs[QK_K]; // quants + int16_t bsums[QK_K/16]; // sum of quants in groups of 16 +} block_q8_k; +static_assert(sizeof(block_q8_k) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_t), "wrong q8_k block size/padding"); + + +// Quantization +void quantize_row_q2_k_reference(const float * restrict x, block_q2_k * restrict y, int k); +void quantize_row_q3_k_reference(const float * restrict x, block_q3_k * restrict y, int k); +void quantize_row_q4_k_reference(const float * restrict x, block_q4_k * restrict y, int k); +void quantize_row_q5_k_reference(const float * restrict x, block_q5_k * restrict y, int k); +void quantize_row_q6_k_reference(const float * restrict x, block_q6_k * restrict y, int k); +void quantize_row_q8_k_reference(const float * restrict x, block_q8_k * restrict y, int k); + +void quantize_row_q2_k(const float * restrict x, void * restrict y, int k); +void quantize_row_q3_k(const float * restrict x, void * restrict y, int k); +void quantize_row_q4_k(const float * restrict x, void * restrict y, int k); +void quantize_row_q5_k(const float * restrict x, void * restrict y, int k); +void quantize_row_q6_k(const float * restrict x, void * restrict y, int k); +void quantize_row_q8_k(const float * restrict x, void * restrict y, int k); + +// Dequantization +void dequantize_row_q2_k(const block_q2_k * restrict x, float * restrict y, int k); +void dequantize_row_q3_k(const block_q3_k * restrict x, float * restrict y, int k); +void dequantize_row_q4_k(const block_q4_k * restrict x, float * restrict y, int k); +void dequantize_row_q5_k(const block_q5_k * restrict x, float * restrict y, int k); +void dequantize_row_q6_k(const block_q6_k * restrict x, float * restrict y, int k); +void dequantize_row_q8_k(const block_q8_k * restrict x, float * restrict y, int k); + +// Dot product +void ggml_vec_dot_q2_k_q8_k(int n, float * restrict s, const void * restrict vx, const void * restrict vy); +void ggml_vec_dot_q3_k_q8_k(int n, float * restrict s, const void * restrict vx, const void * restrict vy); +void ggml_vec_dot_q4_k_q8_k(int n, float * restrict s, const void * restrict vx, const void * restrict vy); +void ggml_vec_dot_q5_k_q8_k(int n, float * restrict s, const void * restrict vx, const void * restrict vy); +void ggml_vec_dot_q6_k_q8_k(int n, float * restrict s, const void * restrict vx, const void * restrict vy); + +// Quantization with histogram collection +size_t ggml_quantize_q2_k(const float * src, void * dst, int n, int k, int64_t * hist); +size_t ggml_quantize_q3_k(const float * src, void * dst, int n, int k, int64_t * hist); +size_t ggml_quantize_q4_k(const float * src, void * dst, int n, int k, int64_t * hist); +size_t ggml_quantize_q5_k(const float * src, void * dst, int n, int k, int64_t * hist); +size_t ggml_quantize_q6_k(const float * src, void * dst, int n, int k, int64_t * hist); + diff --git a/ggml.c b/ggml.c index 00bbee5..7f9bff9 100644 --- a/ggml.c +++ b/ggml.c @@ -2,6 +2,7 @@ #define _GNU_SOURCE #include "ggml.h" +#include "ggml-quants-k.h" #if defined(_MSC_VER) || defined(__MINGW32__) #include // using malloc.h with MSC/MINGW @@ -1565,6 +1566,46 @@ static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = { .vec_dot_q = NULL, // TODO .vec_dot_type = GGML_TYPE_Q8_1, }, + [GGML_TYPE_Q2_K] = { + .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q2_k, + .quantize_row_q = quantize_row_q2_k, + .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q2_k_reference, + .quantize_row_q_dot = quantize_row_q8_k, + .vec_dot_q = ggml_vec_dot_q2_k_q8_k, + .vec_dot_type = GGML_TYPE_Q8_K, + }, + [GGML_TYPE_Q3_K] = { + .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q3_k, + .quantize_row_q = quantize_row_q3_k, + .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q3_k_reference, + .quantize_row_q_dot = quantize_row_q8_k, + .vec_dot_q = ggml_vec_dot_q3_k_q8_k, + .vec_dot_type = GGML_TYPE_Q8_K, + }, + [GGML_TYPE_Q4_K] = { + .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_k, + .quantize_row_q = quantize_row_q4_k, + .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_k_reference, + .quantize_row_q_dot = quantize_row_q8_k, + .vec_dot_q = ggml_vec_dot_q4_k_q8_k, + .vec_dot_type = GGML_TYPE_Q8_K, + }, + [GGML_TYPE_Q5_K] = { + .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_k, + .quantize_row_q = quantize_row_q5_k, + .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_k_reference, + .quantize_row_q_dot = quantize_row_q8_k, + .vec_dot_q = ggml_vec_dot_q5_k_q8_k, + .vec_dot_type = GGML_TYPE_Q8_K, + }, + [GGML_TYPE_Q6_K] = { + .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q6_k, + .quantize_row_q = quantize_row_q6_k, + .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q6_k_reference, + .quantize_row_q_dot = quantize_row_q8_k, + .vec_dot_q = ggml_vec_dot_q6_k_q8_k, + .vec_dot_type = GGML_TYPE_Q8_K, + }, }; // For internal test use @@ -3444,11 +3485,17 @@ static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = { [GGML_TYPE_Q5_1] = QK5_1, [GGML_TYPE_Q8_0] = QK8_0, [GGML_TYPE_Q8_1] = QK8_1, + [GGML_TYPE_Q2_K] = QK_K, + [GGML_TYPE_Q3_K] = QK_K, + [GGML_TYPE_Q4_K] = QK_K, + [GGML_TYPE_Q5_K] = QK_K, + [GGML_TYPE_Q6_K] = QK_K, + [GGML_TYPE_Q8_K] = QK_K, [GGML_TYPE_I8] = 1, [GGML_TYPE_I16] = 1, [GGML_TYPE_I32] = 1, }; -static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated"); +static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated"); static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = { [GGML_TYPE_F32] = sizeof(float), @@ -3459,11 +3506,17 @@ static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = { [GGML_TYPE_Q5_1] = sizeof(block_q5_1), [GGML_TYPE_Q8_0] = sizeof(block_q8_0), [GGML_TYPE_Q8_1] = sizeof(block_q8_1), + [GGML_TYPE_Q2_K] = sizeof(block_q2_k), + [GGML_TYPE_Q3_K] = sizeof(block_q3_k), + [GGML_TYPE_Q4_K] = sizeof(block_q4_k), + [GGML_TYPE_Q5_K] = sizeof(block_q5_k), + [GGML_TYPE_Q6_K] = sizeof(block_q6_k), + [GGML_TYPE_Q8_K] = sizeof(block_q8_k), [GGML_TYPE_I8] = sizeof(int8_t), [GGML_TYPE_I16] = sizeof(int16_t), [GGML_TYPE_I32] = sizeof(int32_t), }; -static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated"); +static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated"); static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = { @@ -3475,11 +3528,17 @@ static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = { [GGML_TYPE_Q5_1] = "q5_1", [GGML_TYPE_Q8_0] = "q8_0", [GGML_TYPE_Q8_1] = "q8_1", + [GGML_TYPE_Q2_K] = "q2_k", + [GGML_TYPE_Q3_K] = "q3_k", + [GGML_TYPE_Q4_K] = "q4_k", + [GGML_TYPE_Q5_K] = "q5_k", + [GGML_TYPE_Q6_K] = "q6_k", + [GGML_TYPE_Q8_K] = "q8_k", [GGML_TYPE_I8] = "i8", [GGML_TYPE_I16] = "i16", [GGML_TYPE_I32] = "i32", }; -static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated"); +static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated"); static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = { [GGML_TYPE_F32] = false, @@ -3490,11 +3549,17 @@ static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = { [GGML_TYPE_Q5_1] = true, [GGML_TYPE_Q8_0] = true, [GGML_TYPE_Q8_1] = true, + [GGML_TYPE_Q2_K] = true, + [GGML_TYPE_Q3_K] = true, + [GGML_TYPE_Q4_K] = true, + [GGML_TYPE_Q5_K] = true, + [GGML_TYPE_Q6_K] = true, + [GGML_TYPE_Q8_K] = true, [GGML_TYPE_I8] = false, [GGML_TYPE_I16] = false, [GGML_TYPE_I32] = false, }; -static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated"); +static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated"); static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "NONE", @@ -3808,6 +3873,11 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) { case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break; case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break; case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break; + case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break; + case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break; + case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break; + case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break; + case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break; case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break; case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break; } @@ -7623,6 +7693,11 @@ static void ggml_compute_forward_add( case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: { ggml_compute_forward_add_q_f32(params, src0, src1, dst); } break; @@ -7926,6 +8001,11 @@ static void ggml_compute_forward_add1( case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_1: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: { ggml_compute_forward_add1_q_f32(params, src0, src1, dst); } break; @@ -8048,6 +8128,11 @@ static void ggml_compute_forward_acc( case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_1: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: default: { GGML_ASSERT(false); @@ -10148,6 +10233,11 @@ static void ggml_compute_forward_mul_mat( case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_1: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: { ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst); } break; @@ -10331,6 +10421,11 @@ static void ggml_compute_forward_set( case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_1: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: default: { GGML_ASSERT(false); @@ -10496,6 +10591,11 @@ static void ggml_compute_forward_get_rows( case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_1: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: { ggml_compute_forward_get_rows_q(params, src0, src1, dst); } break; @@ -11042,6 +11142,12 @@ static void ggml_compute_forward_alibi( case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_1: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: + case GGML_TYPE_Q8_K: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -11113,6 +11219,12 @@ static void ggml_compute_forward_clamp( case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_1: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: + case GGML_TYPE_Q8_K: case GGML_TYPE_I8: case GGML_TYPE_I16: case GGML_TYPE_I32: @@ -16152,6 +16264,36 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i block_q8_0 * block = (block_q8_0*)dst + start / QK8_0; result = ggml_quantize_q8_0(src + start, block, n, n, hist); } break; + case GGML_TYPE_Q2_K: + { + GGML_ASSERT(start % QK_K == 0); + block_q2_k * block = (block_q2_k*)dst + start / QK_K; + result = ggml_quantize_q2_k(src + start, block, n, n, hist); + } break; + case GGML_TYPE_Q3_K: + { + GGML_ASSERT(start % QK_K == 0); + block_q3_k * block = (block_q3_k*)dst + start / QK_K; + result = ggml_quantize_q3_k(src + start, block, n, n, hist); + } break; + case GGML_TYPE_Q4_K: + { + GGML_ASSERT(start % QK_K == 0); + block_q4_k * block = (block_q4_k*)dst + start / QK_K; + result = ggml_quantize_q4_k(src + start, block, n, n, hist); + } break; + case GGML_TYPE_Q5_K: + { + GGML_ASSERT(start % QK_K == 0); + block_q5_k * block = (block_q5_k*)dst + start / QK_K; + result = ggml_quantize_q5_k(src + start, block, n, n, hist); + } break; + case GGML_TYPE_Q6_K: + { + GGML_ASSERT(start % QK_K == 0); + block_q6_k * block = (block_q6_k*)dst + start / QK_K; + result = ggml_quantize_q6_k(src + start, block, n, n, hist); + } break; default: assert(false); } diff --git a/ggml.h b/ggml.h index 2ea87ce..d1ba15f 100644 --- a/ggml.h +++ b/ggml.h @@ -241,6 +241,13 @@ extern "C" { GGML_TYPE_Q5_1 = 7, GGML_TYPE_Q8_0 = 8, GGML_TYPE_Q8_1 = 9, + // k-quantizations + GGML_TYPE_Q2_K = 10, + GGML_TYPE_Q3_K = 11, + GGML_TYPE_Q4_K = 12, + GGML_TYPE_Q5_K = 13, + GGML_TYPE_Q6_K = 14, + GGML_TYPE_Q8_K = 15, GGML_TYPE_I8, GGML_TYPE_I16, GGML_TYPE_I32, @@ -264,6 +271,11 @@ extern "C" { GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors + GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors + GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors + GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors + GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors + GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors }; // available tensor operations: diff --git a/llama.cpp b/llama.cpp index a164501..e2511e5 100644 --- a/llama.cpp +++ b/llama.cpp @@ -515,6 +515,11 @@ struct llama_file_loader { case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: break; default: { throw format("unrecognized tensor type %u\n", shard.type); @@ -590,6 +595,11 @@ struct llama_file_saver { case GGML_TYPE_Q5_0: case GGML_TYPE_Q5_1: case GGML_TYPE_Q8_0: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: break; default: LLAMA_ASSERT(false); } @@ -906,6 +916,16 @@ static const char *llama_ftype_name(enum llama_ftype ftype) { case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0"; case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1"; case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0"; + // K-quants + case LLAMA_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K"; + case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small"; + case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium"; + case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large"; + case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small"; + case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium"; + case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small"; + case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium"; + case LLAMA_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K"; default: return "unknown, may not work"; } } @@ -2113,8 +2133,18 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break; case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break; case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break; + // K-quants + case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break; + case LLAMA_FTYPE_MOSTLY_Q3_K_S: + case LLAMA_FTYPE_MOSTLY_Q3_K_M: + case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break; + case LLAMA_FTYPE_MOSTLY_Q4_K_S: + case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break; + case LLAMA_FTYPE_MOSTLY_Q5_K_S: + case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break; + case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break; default: throw format("invalid output file type %d\n", ftype); - }; + } if (nthread <= 0) { nthread = std::thread::hardware_concurrency(); @@ -2124,6 +2154,20 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s /*vocab_only*/ false)); llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), ftype); + int n_attention_wv = 0; + int n_feed_forward_w2 = 0; + for (auto& tensor : model_loader->tensors_map.tensors) { + if (tensor.name.find("attention.wv.weight") != std::string::npos) { + ++n_attention_wv; + } + else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) { + ++n_feed_forward_w2; + } + } + + int i_attention_wv = 0; + int i_feed_forward_w2 = 0; + size_t total_size_org = 0; size_t total_size_new = 0; std::vector hist_all(1 << 4, 0); @@ -2166,6 +2210,27 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0); } else { new_type = quantized_type; + if (tensor.name == "output.weight") new_type = GGML_TYPE_Q6_K; + else if (tensor.name.find("attention.wv.weight") != std::string::npos) { + if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; + else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && + (i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8 || + (i_attention_wv - n_attention_wv/8)%3 == 2)) new_type = GGML_TYPE_Q6_K; + ++i_attention_wv; + } + else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) { + if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; + else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && + (i_feed_forward_w2 < n_feed_forward_w2/8 || i_feed_forward_w2 >= 7*n_feed_forward_w2/8 || + (i_feed_forward_w2 - n_feed_forward_w2/8)%3 == 2)) new_type = GGML_TYPE_Q6_K; + ++i_feed_forward_w2; + } + else if (tensor.name.find("attention.wo.weight") != std::string::npos) { + if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; + } float * f32_data; size_t nelements = tensor.ne.at(0) * tensor.ne.at(1); llama_buffer f32_conv_buf; @@ -2233,12 +2298,16 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s } printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0); + int64_t tot_count = 0; for (size_t i = 0; i < hist_cur.size(); i++) { hist_all[i] += hist_cur[i]; + tot_count += hist_cur[i]; } - for (size_t i = 0; i < hist_cur.size(); i++) { - printf("%5.3f ", hist_cur[i] / float(nelements)); + if (tot_count > 0) { + for (size_t i = 0; i < hist_cur.size(); i++) { + printf("%5.3f ", hist_cur[i] / float(nelements)); + } } printf("\n"); } @@ -2256,11 +2325,13 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s sum_all += hist_all[i]; } - printf("%s: hist: ", __func__); - for (size_t i = 0; i < hist_all.size(); i++) { - printf("%5.3f ", hist_all[i] / float(sum_all)); + if (sum_all > 0) { + printf("%s: hist: ", __func__); + for (size_t i = 0; i < hist_all.size(); i++) { + printf("%5.3f ", hist_all[i] / float(sum_all)); + } + printf("\n"); } - printf("\n"); } } diff --git a/llama.h b/llama.h index 87fa973..7a64197 100644 --- a/llama.h +++ b/llama.h @@ -94,6 +94,15 @@ extern "C" { LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors + LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors + LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors + LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors + LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors + LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors + LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors + LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors + LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors }; LLAMA_API struct llama_context_params llama_context_default_params(); diff --git a/tests/test-quantize-fns.cpp b/tests/test-quantize-fns.cpp index a31a188..728460b 100644 --- a/tests/test-quantize-fns.cpp +++ b/tests/test-quantize-fns.cpp @@ -12,6 +12,8 @@ const float MAX_QUANTIZATION_REFERENCE_ERROR = 0.0001; const float MAX_QUANTIZATION_TOTAL_ERROR = 0.002; +const float MAX_QUANTIZATION_TOTAL_ERROR_2BITS = 0.0075; +const float MAX_QUANTIZATION_TOTAL_ERROR_3BITS = 0.0040; const float MAX_DOT_PRODUCT_ERROR = 0.02; const char* RESULT_STR[] = {"ok", "FAILED"}; @@ -122,7 +124,10 @@ int main(int argc, char * argv[]) { if (qfns.quantize_row_q && qfns.dequantize_row_q) { const float total_error = total_quantization_error(qfns, test_size, test_data.data()); - failed = !(total_error < MAX_QUANTIZATION_TOTAL_ERROR); + const float max_quantization_error = + type == GGML_TYPE_Q2_K ? MAX_QUANTIZATION_TOTAL_ERROR_2BITS : + type == GGML_TYPE_Q3_K ? MAX_QUANTIZATION_TOTAL_ERROR_3BITS : MAX_QUANTIZATION_TOTAL_ERROR; + failed = !(total_error < max_quantization_error); num_failed += failed; if (failed || verbose) { printf("%5s absolute quantization error: %s (%f)\n", ggml_type_name(type), RESULT_STR[failed], total_error);