mirror of
https://git.adityakumar.xyz/llama.cpp.git
synced 2024-11-09 15:29:43 +00:00
llama : multi-threaded quantization (#1075)
* Multi-threading quantization. Not much gain for simple quantizations, bit it will be important for quantizations that require more CPU cycles. * Multi-threading for quantize-stats It now does the job in ~14 seconds on my Mac for Q4_0, Q4_1 and Q4_2. Single-threaded it was taking more than 2 minutes after adding the more elaborate version of Q4_2. * Reviewer comments * Avoiding compiler confusion After changing chunk_size to const int as suggested by @ggerganov, clang and GCC starting to warn me that I don't need to capture it in the lambda. So, I removed it from the capture list. But that makes the MSVC build fail. So, making it a constexpr to make every compiler happy. * Still fighting with lambda captures in MSVC --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
e0305ead3a
commit
38de86a711
6 changed files with 183 additions and 61 deletions
|
@ -15,6 +15,8 @@
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <unordered_map>
|
#include <unordered_map>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
#include <thread>
|
||||||
|
#include <mutex>
|
||||||
|
|
||||||
struct quantize_stats_params {
|
struct quantize_stats_params {
|
||||||
std::string model = "models/7B/ggml-model-f16.bin";
|
std::string model = "models/7B/ggml-model-f16.bin";
|
||||||
|
@ -27,7 +29,6 @@ struct quantize_stats_params {
|
||||||
std::vector<enum ggml_type> include_types;
|
std::vector<enum ggml_type> include_types;
|
||||||
};
|
};
|
||||||
|
|
||||||
const int64_t SCRATCH_ELEMENTS = 32*32;
|
|
||||||
const size_t HISTOGRAM_BUCKETS = 150;
|
const size_t HISTOGRAM_BUCKETS = 150;
|
||||||
const double HISTOGRAM_RANGE = 0.03;
|
const double HISTOGRAM_RANGE = 0.03;
|
||||||
|
|
||||||
|
@ -90,6 +91,13 @@ void update_error_stats(int64_t nelements, const float * input, const float * ou
|
||||||
stats.num_samples += nelements;
|
stats.num_samples += nelements;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void combine_error_stats(error_stats & into, const error_stats & from) {
|
||||||
|
into.num_samples += from.num_samples;
|
||||||
|
into.total_error += from.total_error;
|
||||||
|
if (from.max_error > into.max_error) into.max_error = from.max_error;
|
||||||
|
for (size_t i=0; i<HISTOGRAM_BUCKETS; ++i) into.error_histogram[i] += from.error_histogram[i];
|
||||||
|
}
|
||||||
|
|
||||||
double find_quantile(const error_stats & stats, double quantile) {
|
double find_quantile(const error_stats & stats, double quantile) {
|
||||||
double sum = std::accumulate(std::begin(stats.error_histogram), std::end(stats.error_histogram), 0.0);
|
double sum = std::accumulate(std::begin(stats.error_histogram), std::end(stats.error_histogram), 0.0);
|
||||||
|
|
||||||
|
@ -130,6 +138,36 @@ static bool tensor_is_contiguous(const struct ggml_tensor * tensor) {
|
||||||
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
|
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void test_roundtrip_on_chunk(
|
||||||
|
const ggml_tensor * layer,
|
||||||
|
int64_t offset,
|
||||||
|
int64_t chunk_size,
|
||||||
|
const quantize_fns_t & qfns,
|
||||||
|
bool use_reference,
|
||||||
|
float * input_scratch,
|
||||||
|
char * quantized_scratch,
|
||||||
|
float * output_scratch,
|
||||||
|
error_stats & stats) {
|
||||||
|
|
||||||
|
if (layer->type == GGML_TYPE_F16) {
|
||||||
|
for (int i = 0; i < chunk_size; i++) {
|
||||||
|
input_scratch[i] = ggml_get_f32_1d(layer, i + offset);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
input_scratch = ggml_get_data_f32(layer) + offset;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (use_reference) {
|
||||||
|
qfns.quantize_row_q_reference(input_scratch, quantized_scratch, chunk_size);
|
||||||
|
} else {
|
||||||
|
qfns.quantize_row_q(input_scratch, quantized_scratch, chunk_size);
|
||||||
|
}
|
||||||
|
qfns.dequantize_row_q(quantized_scratch, output_scratch, chunk_size);
|
||||||
|
|
||||||
|
update_error_stats(chunk_size, input_scratch, output_scratch, stats);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
// Run quantization function for a single layer and update error stats
|
// Run quantization function for a single layer and update error stats
|
||||||
void test_roundtrip_on_layer(
|
void test_roundtrip_on_layer(
|
||||||
std::string & name,
|
std::string & name,
|
||||||
|
@ -137,40 +175,61 @@ void test_roundtrip_on_layer(
|
||||||
const quantize_fns_t & qfns,
|
const quantize_fns_t & qfns,
|
||||||
bool use_reference,
|
bool use_reference,
|
||||||
const ggml_tensor * layer,
|
const ggml_tensor * layer,
|
||||||
float * input_scratch,
|
std::vector<float> & input_scratch,
|
||||||
char *quantized_scratch,
|
std::vector<char> & quantized_scratch,
|
||||||
float * output_scratch,
|
std::vector<float> & output_scratch,
|
||||||
error_stats & total_error) {
|
error_stats & total_error,
|
||||||
|
int max_thread = 0) {
|
||||||
|
|
||||||
assert(tensor_is_contiguous(layer));
|
assert(tensor_is_contiguous(layer));
|
||||||
error_stats layer_error {};
|
error_stats layer_error {};
|
||||||
int64_t nelements = ggml_nelements(layer);
|
uint64_t nelements = ggml_nelements(layer);
|
||||||
|
|
||||||
for (int64_t offset = 0; offset < nelements; offset += SCRATCH_ELEMENTS) {
|
float* input_scratch_ptr = nullptr;
|
||||||
int64_t chunk_size = std::min(SCRATCH_ELEMENTS, nelements - offset);
|
if (layer->type == GGML_TYPE_F16) {
|
||||||
|
if (input_scratch.size() < nelements) input_scratch.resize(nelements);
|
||||||
if (layer->type == GGML_TYPE_F16) {
|
input_scratch_ptr = input_scratch.data();
|
||||||
for (int i = 0; i < chunk_size; i++) {
|
|
||||||
input_scratch[i] = ggml_get_f32_1d(layer, i + offset);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
input_scratch = ggml_get_data_f32(layer) + offset;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (use_reference) {
|
|
||||||
qfns.quantize_row_q_reference(input_scratch, quantized_scratch, chunk_size);
|
|
||||||
} else {
|
|
||||||
qfns.quantize_row_q(input_scratch, quantized_scratch, chunk_size);
|
|
||||||
}
|
|
||||||
qfns.dequantize_row_q(quantized_scratch, output_scratch, chunk_size);
|
|
||||||
|
|
||||||
update_error_stats(chunk_size, input_scratch, output_scratch, total_error);
|
|
||||||
if (print_layer_stats) {
|
|
||||||
update_error_stats(chunk_size, input_scratch, output_scratch, layer_error);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
if (quantized_scratch.size() < 4*nelements) quantized_scratch.resize(4*nelements);
|
||||||
|
if (output_scratch.size() < nelements) output_scratch.resize(nelements);
|
||||||
|
|
||||||
|
if (max_thread < 1) max_thread = std::thread::hardware_concurrency();
|
||||||
|
int chunk_size = 32*512;
|
||||||
|
int num_chunks = (nelements + chunk_size - 1)/chunk_size;
|
||||||
|
|
||||||
|
if (num_chunks < 2 || max_thread < 2) {
|
||||||
|
test_roundtrip_on_chunk(layer, 0, nelements, qfns, use_reference, input_scratch_ptr, quantized_scratch.data(),
|
||||||
|
output_scratch.data(), print_layer_stats ? layer_error : total_error);
|
||||||
|
} else {
|
||||||
|
auto & stats = print_layer_stats ? layer_error : total_error;
|
||||||
|
std::mutex mutex;
|
||||||
|
uint64_t counter = 0;
|
||||||
|
auto compute = [&mutex, &counter, &stats, &qfns, nelements, layer, use_reference, input_scratch_ptr,
|
||||||
|
&quantized_scratch, &output_scratch, chunk_size] () {
|
||||||
|
error_stats local_stats {};
|
||||||
|
while (true) {
|
||||||
|
std::unique_lock<std::mutex> lock(mutex);
|
||||||
|
uint64_t offset = counter; counter += chunk_size;
|
||||||
|
if (offset >= nelements) {
|
||||||
|
combine_error_stats(stats, local_stats);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
lock.unlock();
|
||||||
|
uint64_t chunk = offset + chunk_size < nelements ? chunk_size : nelements - offset;
|
||||||
|
test_roundtrip_on_chunk(layer, offset, chunk, qfns, use_reference, input_scratch_ptr + offset,
|
||||||
|
quantized_scratch.data() + 4*offset, output_scratch.data() + offset, local_stats);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
int nthread = std::min(num_chunks, max_thread);
|
||||||
|
std::vector<std::thread> workers(nthread-1);
|
||||||
|
for (auto& w : workers) w = std::thread(compute);
|
||||||
|
compute();
|
||||||
|
for (auto& w : workers) w.join();
|
||||||
|
}
|
||||||
|
|
||||||
if (print_layer_stats) {
|
if (print_layer_stats) {
|
||||||
print_error_stats(name, layer_error, false);
|
print_error_stats(name, layer_error, false);
|
||||||
|
combine_error_stats(total_error, layer_error);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -181,6 +240,7 @@ int main(int argc, char ** argv) {
|
||||||
|
|
||||||
// read command line
|
// read command line
|
||||||
|
|
||||||
|
int max_thread = 0;
|
||||||
bool invalid_param = false;
|
bool invalid_param = false;
|
||||||
std::string arg;
|
std::string arg;
|
||||||
for (int i = 1; i < argc; i++) {
|
for (int i = 1; i < argc; i++) {
|
||||||
|
@ -230,6 +290,12 @@ int main(int argc, char ** argv) {
|
||||||
fprintf(stderr, "error: %s not in list of types\n", argv[i]);
|
fprintf(stderr, "error: %s not in list of types\n", argv[i]);
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
}
|
}
|
||||||
|
} else if (arg == "-n" || arg == "--num-threads") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
max_thread = atoi(argv[i]);
|
||||||
} else {
|
} else {
|
||||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||||
quantize_stats_print_usage(argc, argv);
|
quantize_stats_print_usage(argc, argv);
|
||||||
|
@ -295,9 +361,9 @@ int main(int argc, char ** argv) {
|
||||||
}
|
}
|
||||||
printf("testing %d layers with max size %" PRId64 "\n", included_layers, max_nelements);
|
printf("testing %d layers with max size %" PRId64 "\n", included_layers, max_nelements);
|
||||||
// allocate scratch space
|
// allocate scratch space
|
||||||
std::vector<float> input_scratch(SCRATCH_ELEMENTS);
|
std::vector<float> input_scratch;
|
||||||
std::vector<char> quantized_scratch(SCRATCH_ELEMENTS*4);
|
std::vector<char> quantized_scratch;
|
||||||
std::vector<float> output_scratch(SCRATCH_ELEMENTS);
|
std::vector<float> output_scratch;
|
||||||
|
|
||||||
// loop throught quantization types
|
// loop throught quantization types
|
||||||
for (int i = 0; i < GGML_TYPE_COUNT; i++) {
|
for (int i = 0; i < GGML_TYPE_COUNT; i++) {
|
||||||
|
@ -328,10 +394,11 @@ int main(int argc, char ** argv) {
|
||||||
qfns,
|
qfns,
|
||||||
params.reference,
|
params.reference,
|
||||||
kv_tensor.second,
|
kv_tensor.second,
|
||||||
input_scratch.data(),
|
input_scratch,
|
||||||
quantized_scratch.data(),
|
quantized_scratch,
|
||||||
output_scratch.data(),
|
output_scratch,
|
||||||
global_stats
|
global_stats,
|
||||||
|
max_thread
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -10,8 +10,8 @@
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
ggml_time_init();
|
ggml_time_init();
|
||||||
|
|
||||||
if (argc != 4) {
|
if (argc < 4) {
|
||||||
fprintf(stderr, "usage: %s model-f32.bin model-quant.bin type\n", argv[0]);
|
fprintf(stderr, "usage: %s model-f32.bin model-quant.bin type [nthread]\n", argv[0]);
|
||||||
fprintf(stderr, " type = %d - q4_0\n", LLAMA_FTYPE_MOSTLY_Q4_0);
|
fprintf(stderr, " type = %d - q4_0\n", LLAMA_FTYPE_MOSTLY_Q4_0);
|
||||||
fprintf(stderr, " type = %d - q4_1\n", LLAMA_FTYPE_MOSTLY_Q4_1);
|
fprintf(stderr, " type = %d - q4_1\n", LLAMA_FTYPE_MOSTLY_Q4_1);
|
||||||
fprintf(stderr, " type = %d - q4_2\n", LLAMA_FTYPE_MOSTLY_Q4_2);
|
fprintf(stderr, " type = %d - q4_2\n", LLAMA_FTYPE_MOSTLY_Q4_2);
|
||||||
|
@ -30,6 +30,7 @@ int main(int argc, char ** argv) {
|
||||||
const std::string fname_out = argv[2];
|
const std::string fname_out = argv[2];
|
||||||
|
|
||||||
const enum llama_ftype ftype = (enum llama_ftype)atoi(argv[3]);
|
const enum llama_ftype ftype = (enum llama_ftype)atoi(argv[3]);
|
||||||
|
int nthread = argc > 4 ? atoi(argv[4]) : 0;
|
||||||
|
|
||||||
const int64_t t_main_start_us = ggml_time_us();
|
const int64_t t_main_start_us = ggml_time_us();
|
||||||
|
|
||||||
|
@ -39,7 +40,7 @@ int main(int argc, char ** argv) {
|
||||||
{
|
{
|
||||||
const int64_t t_start_us = ggml_time_us();
|
const int64_t t_start_us = ggml_time_us();
|
||||||
|
|
||||||
if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), ftype)) {
|
if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), ftype, nthread)) {
|
||||||
fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
|
fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
27
ggml.c
27
ggml.c
|
@ -12189,6 +12189,33 @@ size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t *
|
||||||
return (n/QK4_3*sizeof(block_q4_3));
|
return (n/QK4_3*sizeof(block_q4_3));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
|
||||||
|
size_t result = 0;
|
||||||
|
switch (type) {
|
||||||
|
case GGML_TYPE_Q4_0:
|
||||||
|
{
|
||||||
|
GGML_ASSERT(start % QK4_0 == 0);
|
||||||
|
block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
|
||||||
|
result = ggml_quantize_q4_0(src + start, block, n, n, hist);
|
||||||
|
} break;
|
||||||
|
case GGML_TYPE_Q4_1:
|
||||||
|
{
|
||||||
|
GGML_ASSERT(start % QK4_1 == 0);
|
||||||
|
block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
|
||||||
|
result = ggml_quantize_q4_1(src + start, block, n, n, hist);
|
||||||
|
} break;
|
||||||
|
case GGML_TYPE_Q4_2:
|
||||||
|
{
|
||||||
|
GGML_ASSERT(start % QK4_2 == 0);
|
||||||
|
block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
|
||||||
|
result = ggml_quantize_q4_2(src + start, block, n, n, hist);
|
||||||
|
} break;
|
||||||
|
default:
|
||||||
|
assert(false);
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
////////////////////////////////////////////////////////////////////////////////
|
////////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
int ggml_cpu_has_avx(void) {
|
int ggml_cpu_has_avx(void) {
|
||||||
|
|
2
ggml.h
2
ggml.h
|
@ -813,6 +813,8 @@ size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t *
|
||||||
size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist);
|
size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||||
size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist);
|
size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||||
|
|
||||||
|
size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
|
||||||
|
|
||||||
//
|
//
|
||||||
// system info
|
// system info
|
||||||
//
|
//
|
||||||
|
|
67
llama.cpp
67
llama.cpp
|
@ -24,6 +24,9 @@
|
||||||
#include <memory>
|
#include <memory>
|
||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
#include <initializer_list>
|
#include <initializer_list>
|
||||||
|
#include <thread>
|
||||||
|
#include <atomic>
|
||||||
|
#include <mutex>
|
||||||
|
|
||||||
#define LLAMA_USE_SCRATCH
|
#define LLAMA_USE_SCRATCH
|
||||||
#define LLAMA_MAX_SCRATCH_BUFFERS 16
|
#define LLAMA_MAX_SCRATCH_BUFFERS 16
|
||||||
|
@ -1572,7 +1575,7 @@ static llama_vocab::id llama_sample_top_p_top_k(
|
||||||
// quantization
|
// quantization
|
||||||
//
|
//
|
||||||
|
|
||||||
static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, enum llama_ftype ftype) {
|
static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, enum llama_ftype ftype, int nthread) {
|
||||||
ggml_type quantized_type;
|
ggml_type quantized_type;
|
||||||
switch (ftype) {
|
switch (ftype) {
|
||||||
case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
|
case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
|
||||||
|
@ -1582,6 +1585,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||||
default: throw format("invalid output file type %d\n", ftype);
|
default: throw format("invalid output file type %d\n", ftype);
|
||||||
};
|
};
|
||||||
|
|
||||||
|
if (nthread <= 0) {
|
||||||
|
nthread = std::thread::hardware_concurrency();
|
||||||
|
}
|
||||||
|
|
||||||
std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp.c_str(), /*use_mmap*/ false,
|
std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp.c_str(), /*use_mmap*/ false,
|
||||||
/*vocab_only*/ false));
|
/*vocab_only*/ false));
|
||||||
llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), ftype);
|
llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), ftype);
|
||||||
|
@ -1590,6 +1597,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||||
size_t total_size_new = 0;
|
size_t total_size_new = 0;
|
||||||
std::vector<int64_t> hist_all(1 << 4, 0);
|
std::vector<int64_t> hist_all(1 << 4, 0);
|
||||||
|
|
||||||
|
std::vector<std::thread> workers;
|
||||||
|
std::mutex mutex;
|
||||||
|
|
||||||
size_t idx = 0;
|
size_t idx = 0;
|
||||||
for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) {
|
for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) {
|
||||||
llama_buffer read_data;
|
llama_buffer read_data;
|
||||||
|
@ -1643,25 +1653,37 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||||
new_data = work.addr;
|
new_data = work.addr;
|
||||||
std::vector<int64_t> hist_cur(1 << 4, 0);
|
std::vector<int64_t> hist_cur(1 << 4, 0);
|
||||||
|
|
||||||
switch (new_type) {
|
int chunk_size = 32 * 512;
|
||||||
case GGML_TYPE_Q4_0:
|
const int nchunk = (nelements + chunk_size - 1)/chunk_size;
|
||||||
{
|
const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
|
||||||
new_size = ggml_quantize_q4_0(f32_data, new_data, nelements, (int) tensor.ne.at(0), hist_cur.data());
|
if (nthread_use < 2) {
|
||||||
} break;
|
new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
|
||||||
case GGML_TYPE_Q4_1:
|
} else {
|
||||||
{
|
size_t counter = 0;
|
||||||
new_size = ggml_quantize_q4_1(f32_data, new_data, nelements, (int) tensor.ne.at(0), hist_cur.data());
|
new_size = 0;
|
||||||
} break;
|
auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements, chunk_size] () {
|
||||||
case GGML_TYPE_Q4_2:
|
std::vector<int64_t> local_hist;
|
||||||
{
|
size_t local_size = 0;
|
||||||
new_size = ggml_quantize_q4_2(f32_data, new_data, nelements, (int) tensor.ne.at(0), hist_cur.data());
|
while (true) {
|
||||||
} break;
|
std::unique_lock<std::mutex> lock(mutex);
|
||||||
case GGML_TYPE_Q4_3:
|
size_t first = counter; counter += chunk_size;
|
||||||
{
|
if (first >= nelements) {
|
||||||
new_size = ggml_quantize_q4_3(f32_data, new_data, nelements, (int) tensor.ne.at(0), hist_cur.data());
|
if (!local_hist.empty()) {
|
||||||
} break;
|
for (int j=0; j<int(local_hist.size()); ++j) hist_cur[j] += local_hist[j];
|
||||||
default:
|
new_size += local_size;
|
||||||
LLAMA_ASSERT(false);
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
lock.unlock();
|
||||||
|
size_t last = std::min(nelements, first + chunk_size);
|
||||||
|
if (local_hist.empty()) local_hist.resize(hist_cur.size(), 0);
|
||||||
|
local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
|
||||||
|
}
|
||||||
|
};
|
||||||
|
if (int(workers.size()) < nthread_use - 1) workers.resize(nthread_use - 1);
|
||||||
|
for (int it = 0; it < nthread_use - 1; ++it) workers[it] = std::thread(compute);
|
||||||
|
compute();
|
||||||
|
for (int it = 0; it < nthread_use - 1; ++it) workers[it].join();
|
||||||
}
|
}
|
||||||
|
|
||||||
printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
|
printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
|
||||||
|
@ -1783,9 +1805,10 @@ void llama_free(struct llama_context * ctx) {
|
||||||
int llama_model_quantize(
|
int llama_model_quantize(
|
||||||
const char * fname_inp,
|
const char * fname_inp,
|
||||||
const char * fname_out,
|
const char * fname_out,
|
||||||
enum llama_ftype ftype) {
|
enum llama_ftype ftype,
|
||||||
|
int nthread) {
|
||||||
try {
|
try {
|
||||||
llama_model_quantize_internal(fname_inp, fname_out, ftype);
|
llama_model_quantize_internal(fname_inp, fname_out, ftype, nthread);
|
||||||
return 0;
|
return 0;
|
||||||
} catch (const std::string & err) {
|
} catch (const std::string & err) {
|
||||||
fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.c_str());
|
fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.c_str());
|
||||||
|
|
4
llama.h
4
llama.h
|
@ -93,10 +93,12 @@ extern "C" {
|
||||||
|
|
||||||
// TODO: not great API - very likely to change
|
// TODO: not great API - very likely to change
|
||||||
// Returns 0 on success
|
// Returns 0 on success
|
||||||
|
// nthread - how many threads to use. If <=0, will use std::thread::hardware_concurrency(), else the number given
|
||||||
LLAMA_API int llama_model_quantize(
|
LLAMA_API int llama_model_quantize(
|
||||||
const char * fname_inp,
|
const char * fname_inp,
|
||||||
const char * fname_out,
|
const char * fname_out,
|
||||||
enum llama_ftype ftype);
|
enum llama_ftype ftype,
|
||||||
|
int nthread);
|
||||||
|
|
||||||
// Apply a LoRA adapter to a loaded model
|
// Apply a LoRA adapter to a loaded model
|
||||||
// path_base_model is the path to a higher quality model to use as a base for
|
// path_base_model is the path to a higher quality model to use as a base for
|
||||||
|
|
Loading…
Reference in a new issue