metal : Q6_K implementation (#1752)

* Metal implementation for Q4_K

Very slow for now:
42 ms / token, Q4_0 runs in 28 ms/token on my
30-core M2 Max GPU.

* Optimizing Q4_K on metal

The first token always takes longer, I guess because
the metal kernel is being jit-compiled.
So, using n = 128 to measure time.

At this point Q4_K takes 29.5 ms / token
compared to 27.2 ms / token for Q4_0.
Quite a bit better than the initial attempt,
but still not good enough.

* Optimizing q4_K metal dot some more

For n = 256 it is now 28.1 ms/token compared to
27 ms/token for q4_0.

* Fix after merge with master

* Metal implementation for Q6_K

Similar to the CUDA implementation.
No idea if this is the optimum for Metal, but the few
alternative variants I tried all had a lower performance.

We get 36.5 ms / token on M2 Max with 30 GPU cores.
This corresponds to ~200 GB/second throughput.

* clang-tidy : add config back

* Much better Q6_K implementation for metal

28.3 ms / token for 7B. Subtracting ~9 ms that is spent in
other compute graph operations, we are left with ~19 ms
for the matrix multiplications. The model is ~5.5 GB,
so we are getting 1000 / 19 * 5.5 = 290 GB/s!

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
Kawrakow 2023-06-08 19:46:22 +03:00 committed by GitHub
parent 8fc8179919
commit 0f291e1f65
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 187 additions and 7 deletions

View file

@ -50,10 +50,12 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(get_rows_f16);
GGML_METAL_DECL_KERNEL(get_rows_q4_0);
GGML_METAL_DECL_KERNEL(get_rows_q4_k);
GGML_METAL_DECL_KERNEL(get_rows_q6_k);
GGML_METAL_DECL_KERNEL(rms_norm);
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q4_k_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q6_k_f32);
GGML_METAL_DECL_KERNEL(rope);
GGML_METAL_DECL_KERNEL(cpy_f32_f16);
GGML_METAL_DECL_KERNEL(cpy_f32_f32);
@ -136,10 +138,12 @@ struct ggml_metal_context * ggml_metal_init(void) {
GGML_METAL_ADD_KERNEL(get_rows_f16);
GGML_METAL_ADD_KERNEL(get_rows_q4_0);
GGML_METAL_ADD_KERNEL(get_rows_q4_k);
GGML_METAL_ADD_KERNEL(get_rows_q6_k);
GGML_METAL_ADD_KERNEL(rms_norm);
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q4_k_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q6_k_f32);
GGML_METAL_ADD_KERNEL(rope);
GGML_METAL_ADD_KERNEL(cpy_f32_f16);
GGML_METAL_ADD_KERNEL(cpy_f32_f32);
@ -530,6 +534,15 @@ void ggml_metal_graph_compute(
nth1 = 16;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_k_f32];
} break;
case GGML_TYPE_Q6_K:
{
GGML_ASSERT(ne02 == 1);
GGML_ASSERT(ne12 == 1);
nth0 = 4;
nth1 = 16;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_k_f32];
} break;
default:
{
fprintf(stderr, "Asserting on type %d\n",(int)src0t);
@ -560,6 +573,9 @@ void ggml_metal_graph_compute(
} else if (src0t == GGML_TYPE_Q4_K) {
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} else if (src0t == GGML_TYPE_Q6_K) {
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} else {
[encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
@ -576,6 +592,7 @@ void ggml_metal_graph_compute(
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_k]; break;
case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_k]; break;
default: GGML_ASSERT(false && "not implemented");
}

View file

@ -303,18 +303,37 @@ kernel void kernel_mul_mat_q4_0_f32(
sum[ith] += acc*d;
}
// accumulate the sum from all threads in the threadgroup
//
// Accumulate the sum from all threads in the threadgroup
// This version is slightly faster than the commented out one below,
// which I copy-pasted from ggerganov's q4_0 dot product for metal.
//
threadgroup_barrier(mem_flags::mem_threadgroup);
for (uint i = nth/2; i > 0; i /= 2) {
if (ith < i) {
sum[ith] += sum[ith + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%4 == 0) {
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%16 == 0) {
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith == 0) {
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
dst[r1*ne0 + r0] = sum[0];
}
//// accumulate the sum from all threads in the threadgroup
//threadgroup_barrier(mem_flags::mem_threadgroup);
//for (uint i = nth/2; i > 0; i /= 2) {
// if (ith < i) {
// sum[ith] += sum[ith + i];
// }
// threadgroup_barrier(mem_flags::mem_threadgroup);
//}
//if (ith == 0) {
// dst[r1*ne0 + r0] = sum[0];
//}
}
kernel void kernel_mul_mat_f16_f32(
@ -515,6 +534,13 @@ typedef struct {
uint8_t qs[QK_K/2]; // 4--bit quants
} block_q4_k;
typedef struct {
uint8_t ql[QK_K/2]; // quants, lower 4 bits
uint8_t qh[QK_K/4]; // quants, upper 2 bits
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
half d; // super-block scale
} block_q6_k;
static inline uchar4 get_scale_min_k4(int j, device const uint8_t * q) {
uchar4 r;
if (j < 4) {
@ -554,6 +580,38 @@ static void dequantize_row_q4_k(device const block_q4_k * x, device float * y, i
}
}
static void dequantize_row_q6_k(device const block_q6_k * x, device float * y, int k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
for (int i = 0; i < nb; i++) {
const float d = x[i].d;
device const uint8_t * ql = x[i].ql;
device const uint8_t * qh = x[i].qh;
device const int8_t * sc = x[i].scales;
for (int n = 0; n < QK_K; n += 128) {
for (int l = 0; l < 32; ++l) {
int is = l/16;
const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
y[l + 0] = d * sc[is + 0] * q1;
y[l + 32] = d * sc[is + 2] * q2;
y[l + 64] = d * sc[is + 4] * q3;
y[l + 96] = d * sc[is + 6] * q4;
}
y += 128;
ql += 64;
qh += 32;
sc += 8;
}
}
}
kernel void kernel_get_rows_q4_k(
device const void * src0,
device const int * src1,
@ -665,3 +723,108 @@ kernel void kernel_mul_mat_q4_k_f32(
// dst[r1*ne0 + r0] = sum[0];
//}
}
kernel void kernel_get_rows_q6_k(
device const void * src0,
device const int * src1,
device float * dst,
constant int64_t & ne00,
constant uint64_t & nb01,
constant uint64_t & nb1,
uint tpig[[thread_position_in_grid]]) {
const int i = tpig;
const int r = ((device int32_t *) src1)[i];
dequantize_row_q6_k(
(device const block_q6_k *) ((device char *) src0 + r*nb01),
(device float *) ((device char *) dst + i*nb1), ne00);
}
kernel void kernel_mul_mat_q6_k_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant int64_t & ne0,
constant int64_t & ne1,
threadgroup float * sum [[threadgroup(0)]],
uint2 tgpig[[threadgroup_position_in_grid]],
uint2 tpig[[thread_position_in_grid]], // we don't use this for now
uint2 tpitg[[thread_position_in_threadgroup]],
uint2 tptg[[threads_per_threadgroup]]) {
const uint8_t kmask1 = 0x03;
const uint8_t kmask2 = 0x0C;
const uint8_t kmask3 = 0x30;
const uint8_t kmask4 = 0xC0;
const int nb = ne00/QK_K;
const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
device const block_q6_k * x = (device const block_q6_k *) src0 + r0*nb;
device const float * yy = (device const float *) src1 + r1*ne10;
const uint nth = tptg.x*tptg.y;
const uint ith = tptg.y*tpitg.x + tpitg.y;
const int step = QK_K / tptg.y; // we expect this to be 16
const int iqs = step * tpitg.y; // 0...240 in steps of 16
const int ip = iqs / 128; // 0 or 1
const int il = (iqs - 128*ip)/16; // 0...7
const int n = 4;
const int is = 8*ip + (n*il)/16;
float sumf = 0;
for (int i = tpitg.x; i < nb; i += tptg.x) {
device const uint8_t * ql = x[i].ql + 64*ip + n*il;
device const uint8_t * qh = x[i].qh + 32*ip + n*il;
device const int8_t * sc = x[i].scales + is;
device const float * y = yy + i * QK_K + 128*ip + n*il;
const float dall = x[i].d;
float4 sums = {0.f, 0.f, 0.f, 0.f};
for (int l = 0; l < n; ++l) {
sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
sums[1] += y[l+32] * ((int8_t)((ql[l+32] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
sums[2] += y[l+64] * ((int8_t)((ql[l+ 0] >> 4) | ((qh[l] & kmask3) << 0)) - 32);
sums[3] += y[l+96] * ((int8_t)((ql[l+32] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
}
sumf += dall * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]);
}
sum[ith] = sumf;
//
// Accumulate the sum from all threads in the threadgroup
//
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%4 == 0) {
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%16 == 0) {
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith == 0) {
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
dst[r1*ne0 + r0] = sum[0];
}
}