mirror of
https://git.adityakumar.xyz/llama.cpp.git
synced 2024-11-09 23:29:44 +00:00
llama : fix compile warnings
This commit is contained in:
parent
5d5817ca60
commit
0e6cbff1b7
4 changed files with 9 additions and 9 deletions
|
@ -38,9 +38,9 @@ float tensor_sum_elements(struct ggml_tensor * tensor) {
|
||||||
|
|
||||||
#define TENSOR_TYPE_AS_STR(TYPE) TYPE == GGML_TYPE_F32 ? "FP32" : TYPE == GGML_TYPE_F16 ? "FP16" : TYPE == GGML_TYPE_Q4_0 ? "Q4_0" : TYPE == GGML_TYPE_Q4_1 ? "Q4_1" : "UNKNOWN"
|
#define TENSOR_TYPE_AS_STR(TYPE) TYPE == GGML_TYPE_F32 ? "FP32" : TYPE == GGML_TYPE_F16 ? "FP16" : TYPE == GGML_TYPE_Q4_0 ? "Q4_0" : TYPE == GGML_TYPE_Q4_1 ? "Q4_1" : "UNKNOWN"
|
||||||
|
|
||||||
#define TENSOR_DUMP(TENSOR) printf("%15s: type = %i (%5s) ne = %5ld x %5ld x %5ld, nb = (%5li, %5li, %5li) - ", #TENSOR, \
|
#define TENSOR_DUMP(TENSOR) printf("%15s: type = %i (%5s) ne = %5d x %5d x %5d, nb = (%5li, %5li, %5li) - ", #TENSOR, \
|
||||||
TENSOR->type,TENSOR_TYPE_AS_STR(TENSOR->type),\
|
TENSOR->type,TENSOR_TYPE_AS_STR(TENSOR->type),\
|
||||||
TENSOR->ne[0], TENSOR->ne[1], TENSOR->ne[2], TENSOR->nb[0], TENSOR->nb[1], TENSOR->nb[2]); \
|
(int) TENSOR->ne[0], (int) TENSOR->ne[1], (int) TENSOR->ne[2], TENSOR->nb[0], TENSOR->nb[1], TENSOR->nb[2]); \
|
||||||
{ float sum = tensor_sum_elements(TENSOR); printf("Sum of tensor %s is %6.2f\n",#TENSOR, sum); }
|
{ float sum = tensor_sum_elements(TENSOR); printf("Sum of tensor %s is %6.2f\n",#TENSOR, sum); }
|
||||||
|
|
||||||
struct benchmark_params_struct {
|
struct benchmark_params_struct {
|
||||||
|
@ -138,7 +138,7 @@ int main(int argc, char ** argv) {
|
||||||
ctx = ggml_init(params);
|
ctx = ggml_init(params);
|
||||||
if (!ctx) {
|
if (!ctx) {
|
||||||
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
||||||
return false;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1702,7 +1702,7 @@ void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens, size_t last_tokens_size, float penalty) {
|
void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty) {
|
||||||
if (last_tokens_size == 0 || penalty == 1.0f) {
|
if (last_tokens_size == 0 || penalty == 1.0f) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
@ -1731,7 +1731,7 @@ void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_dat
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) {
|
void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) {
|
||||||
if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
|
if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
4
llama.h
4
llama.h
|
@ -192,10 +192,10 @@ extern "C" {
|
||||||
// Sampling functions
|
// Sampling functions
|
||||||
|
|
||||||
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
|
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
|
||||||
LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens, size_t last_tokens_size, float penalty);
|
LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty);
|
||||||
|
|
||||||
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
|
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
|
||||||
LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
|
LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
|
||||||
|
|
||||||
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
||||||
LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
|
LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
|
||||||
|
|
|
@ -131,7 +131,7 @@ void test_repetition_penalty(
|
||||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||||
llama_sample_softmax(nullptr, &candidates_p);
|
llama_sample_softmax(nullptr, &candidates_p);
|
||||||
DUMP(&candidates_p);
|
DUMP(&candidates_p);
|
||||||
llama_sample_repetition_penalty(nullptr, &candidates_p, (llama_token *)last_tokens.data(), last_tokens.size(), penalty);
|
llama_sample_repetition_penalty(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), penalty);
|
||||||
llama_sample_softmax(nullptr, &candidates_p);
|
llama_sample_softmax(nullptr, &candidates_p);
|
||||||
DUMP(&candidates_p);
|
DUMP(&candidates_p);
|
||||||
|
|
||||||
|
@ -160,7 +160,7 @@ void test_frequency_presence_penalty(
|
||||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||||
llama_sample_softmax(nullptr, &candidates_p);
|
llama_sample_softmax(nullptr, &candidates_p);
|
||||||
// DUMP(&candidates_p);
|
// DUMP(&candidates_p);
|
||||||
llama_sample_frequency_and_presence_penalties(nullptr, &candidates_p, (llama_token *)last_tokens.data(), last_tokens.size(), alpha_frequency, alpha_presence);
|
llama_sample_frequency_and_presence_penalties(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), alpha_frequency, alpha_presence);
|
||||||
llama_sample_softmax(nullptr, &candidates_p);
|
llama_sample_softmax(nullptr, &candidates_p);
|
||||||
// DUMP(&candidates_p);
|
// DUMP(&candidates_p);
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue