mirror of
https://git.adityakumar.xyz/llama.cpp.git
synced 2024-11-09 23:29:44 +00:00
llama : fix various warnings
This commit is contained in:
parent
6456a4eb9f
commit
0cd22e190a
2 changed files with 53 additions and 33 deletions
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -16,6 +16,7 @@ build-debug/
|
||||||
build-release/
|
build-release/
|
||||||
build-static/
|
build-static/
|
||||||
build-cublas/
|
build-cublas/
|
||||||
|
build-opencl/
|
||||||
build-no-accel/
|
build-no-accel/
|
||||||
build-sanitize-addr/
|
build-sanitize-addr/
|
||||||
build-sanitize-thread/
|
build-sanitize-thread/
|
||||||
|
|
85
llama.cpp
85
llama.cpp
|
@ -50,49 +50,49 @@ static const size_t MB = 1024*1024;
|
||||||
|
|
||||||
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0()
|
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0()
|
||||||
{
|
{
|
||||||
static std::map<e_model, size_t> _MEM_REQ_SCRATCH0 = {
|
static std::map<e_model, size_t> k_sizes = {
|
||||||
{ MODEL_7B, 512ull * MB },
|
{ MODEL_7B, 512ull * MB },
|
||||||
{ MODEL_13B, 512ull * MB },
|
{ MODEL_13B, 512ull * MB },
|
||||||
{ MODEL_30B, 512ull * MB },
|
{ MODEL_30B, 512ull * MB },
|
||||||
{ MODEL_65B, 1024ull * MB },
|
{ MODEL_65B, 1024ull * MB },
|
||||||
};
|
};
|
||||||
return _MEM_REQ_SCRATCH0;
|
return k_sizes;
|
||||||
}
|
}
|
||||||
|
|
||||||
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
|
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
|
||||||
{
|
{
|
||||||
static std::map<e_model, size_t> _MEM_REQ_SCRATCH1 = {
|
static std::map<e_model, size_t> k_sizes = {
|
||||||
{ MODEL_7B, 512ull * MB },
|
{ MODEL_7B, 512ull * MB },
|
||||||
{ MODEL_13B, 512ull * MB },
|
{ MODEL_13B, 512ull * MB },
|
||||||
{ MODEL_30B, 512ull * MB },
|
{ MODEL_30B, 512ull * MB },
|
||||||
{ MODEL_65B, 1024ull * MB },
|
{ MODEL_65B, 1024ull * MB },
|
||||||
};
|
};
|
||||||
return _MEM_REQ_SCRATCH1;
|
return k_sizes;
|
||||||
}
|
}
|
||||||
|
|
||||||
// 2*n_embd*n_ctx*n_layer*sizeof(float16)
|
// 2*n_embd*n_ctx*n_layer*sizeof(float16)
|
||||||
static const std::map<e_model, size_t> & MEM_REQ_KV_SELF()
|
static const std::map<e_model, size_t> & MEM_REQ_KV_SELF()
|
||||||
{
|
{
|
||||||
static std::map<e_model, size_t> _MEM_REQ_KV_SELF = {
|
static std::map<e_model, size_t> k_sizes = {
|
||||||
{ MODEL_7B, 1026ull * MB },
|
{ MODEL_7B, 1026ull * MB },
|
||||||
{ MODEL_13B, 1608ull * MB },
|
{ MODEL_13B, 1608ull * MB },
|
||||||
{ MODEL_30B, 3124ull * MB },
|
{ MODEL_30B, 3124ull * MB },
|
||||||
{ MODEL_65B, 5120ull * MB },
|
{ MODEL_65B, 5120ull * MB },
|
||||||
};
|
};
|
||||||
return _MEM_REQ_KV_SELF;
|
return k_sizes;
|
||||||
}
|
}
|
||||||
|
|
||||||
// this is mostly needed for temporary mul_mat buffers to dequantize the data
|
// this is mostly needed for temporary mul_mat buffers to dequantize the data
|
||||||
// not actually needed if BLAS is disabled
|
// not actually needed if BLAS is disabled
|
||||||
static const std::map<e_model, size_t> & MEM_REQ_EVAL()
|
static const std::map<e_model, size_t> & MEM_REQ_EVAL()
|
||||||
{
|
{
|
||||||
static std::map<e_model, size_t> _MEM_REQ_EVAL = {
|
static std::map<e_model, size_t> k_sizes = {
|
||||||
{ MODEL_7B, 768ull * MB },
|
{ MODEL_7B, 768ull * MB },
|
||||||
{ MODEL_13B, 1024ull * MB },
|
{ MODEL_13B, 1024ull * MB },
|
||||||
{ MODEL_30B, 1280ull * MB },
|
{ MODEL_30B, 1280ull * MB },
|
||||||
{ MODEL_65B, 1536ull * MB },
|
{ MODEL_65B, 1536ull * MB },
|
||||||
};
|
};
|
||||||
return _MEM_REQ_EVAL;
|
return k_sizes;
|
||||||
}
|
}
|
||||||
|
|
||||||
// default hparams (LLaMA 7B)
|
// default hparams (LLaMA 7B)
|
||||||
|
@ -586,12 +586,12 @@ struct llama_model_loader {
|
||||||
std::unique_ptr<llama_mmap> mapping;
|
std::unique_ptr<llama_mmap> mapping;
|
||||||
|
|
||||||
llama_model_loader(const std::string & fname_base, bool use_mmap, bool vocab_only) {
|
llama_model_loader(const std::string & fname_base, bool use_mmap, bool vocab_only) {
|
||||||
auto first_file = new llama_file_loader(fname_base.c_str(), 0, tensors_map);
|
auto * first_file = new llama_file_loader(fname_base.c_str(), 0, tensors_map);
|
||||||
file_loaders.emplace_back(first_file);
|
file_loaders.emplace_back(first_file);
|
||||||
uint32_t n_parts = vocab_only ? 1 : guess_n_parts();
|
uint32_t n_parts = vocab_only ? 1 : guess_n_parts();
|
||||||
for (uint32_t i = 1; i < n_parts; i++) {
|
for (uint32_t i = 1; i < n_parts; i++) {
|
||||||
std::string fname = fname_base + "." + std::to_string(i);
|
std::string fname = fname_base + "." + std::to_string(i);
|
||||||
auto ith_file = new llama_file_loader(fname.c_str(), i, tensors_map);
|
auto * ith_file = new llama_file_loader(fname.c_str(), i, tensors_map);
|
||||||
file_loaders.emplace_back(ith_file);
|
file_loaders.emplace_back(ith_file);
|
||||||
if (ith_file->hparams != first_file->hparams) {
|
if (ith_file->hparams != first_file->hparams) {
|
||||||
throw format("llama.cpp: hparams inconsistent between files");
|
throw format("llama.cpp: hparams inconsistent between files");
|
||||||
|
@ -638,7 +638,7 @@ struct llama_model_loader {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_tensor * get_tensor(const std::string & name, std::vector<uint32_t> ne) {
|
struct ggml_tensor * get_tensor(const std::string & name, const std::vector<uint32_t> & ne) {
|
||||||
auto it = tensors_map.name_to_idx.find(name);
|
auto it = tensors_map.name_to_idx.find(name);
|
||||||
if (it == tensors_map.name_to_idx.end()) {
|
if (it == tensors_map.name_to_idx.end()) {
|
||||||
throw format("llama.cpp: tensor '%s' is missing from model", name.c_str());
|
throw format("llama.cpp: tensor '%s' is missing from model", name.c_str());
|
||||||
|
@ -667,7 +667,7 @@ struct llama_model_loader {
|
||||||
return tensor;
|
return tensor;
|
||||||
}
|
}
|
||||||
|
|
||||||
void done_getting_tensors() {
|
void done_getting_tensors() const {
|
||||||
if (num_ggml_tensors_created != tensors_map.tensors.size()) {
|
if (num_ggml_tensors_created != tensors_map.tensors.size()) {
|
||||||
throw std::string("llama.cpp: file contained more tensors than expected");
|
throw std::string("llama.cpp: file contained more tensors than expected");
|
||||||
}
|
}
|
||||||
|
@ -934,7 +934,8 @@ static void llama_model_load_internal(
|
||||||
|
|
||||||
auto & ctx = model.ctx;
|
auto & ctx = model.ctx;
|
||||||
|
|
||||||
size_t ctx_size, mmapped_size;
|
size_t ctx_size;
|
||||||
|
size_t mmapped_size;
|
||||||
ml->calc_sizes(&ctx_size, &mmapped_size);
|
ml->calc_sizes(&ctx_size, &mmapped_size);
|
||||||
fprintf(stderr, "%s: ggml ctx size = %6.2f KB\n", __func__, ctx_size/1024.0);
|
fprintf(stderr, "%s: ggml ctx size = %6.2f KB\n", __func__, ctx_size/1024.0);
|
||||||
|
|
||||||
|
@ -1074,7 +1075,7 @@ static bool llama_eval_internal(
|
||||||
const auto & model = lctx.model;
|
const auto & model = lctx.model;
|
||||||
const auto & hparams = model.hparams;
|
const auto & hparams = model.hparams;
|
||||||
|
|
||||||
auto & kv_self = model.kv_self;
|
const auto & kv_self = model.kv_self;
|
||||||
|
|
||||||
LLAMA_ASSERT(!!kv_self.ctx);
|
LLAMA_ASSERT(!!kv_self.ctx);
|
||||||
|
|
||||||
|
@ -1318,7 +1319,7 @@ static bool llama_eval_internal(
|
||||||
}
|
}
|
||||||
|
|
||||||
// extract embeddings
|
// extract embeddings
|
||||||
if (lctx.embedding.size()) {
|
if (!lctx.embedding.empty()) {
|
||||||
auto & embedding_out = lctx.embedding;
|
auto & embedding_out = lctx.embedding;
|
||||||
|
|
||||||
embedding_out.resize(n_embd);
|
embedding_out.resize(n_embd);
|
||||||
|
@ -1369,6 +1370,8 @@ struct llama_sp_symbol {
|
||||||
size_t n;
|
size_t n;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
static_assert(std::is_trivially_copyable<llama_sp_symbol>::value, "llama_sp_symbol is not trivially copyable");
|
||||||
|
|
||||||
struct llama_sp_bigram {
|
struct llama_sp_bigram {
|
||||||
struct comparator {
|
struct comparator {
|
||||||
bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
|
bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
|
||||||
|
@ -1401,7 +1404,7 @@ struct llama_tokenizer {
|
||||||
sym.prev = index - 1;
|
sym.prev = index - 1;
|
||||||
sym.next = offs == text.size() ? -1 : index + 1;
|
sym.next = offs == text.size() ? -1 : index + 1;
|
||||||
index++;
|
index++;
|
||||||
symbols_.emplace_back(std::move(sym));
|
symbols_.emplace_back(sym);
|
||||||
}
|
}
|
||||||
|
|
||||||
// seed the work queue with all possible 2-character tokens.
|
// seed the work queue with all possible 2-character tokens.
|
||||||
|
@ -1492,7 +1495,7 @@ static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, co
|
||||||
llama_tokenizer tokenizer(vocab);
|
llama_tokenizer tokenizer(vocab);
|
||||||
std::vector<llama_vocab::id> output;
|
std::vector<llama_vocab::id> output;
|
||||||
|
|
||||||
if (text.size() == 0) {
|
if (text.empty()) {
|
||||||
return output;
|
return output;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1728,7 +1731,7 @@ void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_dat
|
||||||
const int64_t t_start_sample_us = ggml_time_us();
|
const int64_t t_start_sample_us = ggml_time_us();
|
||||||
|
|
||||||
for (size_t i = 0; i < candidates->size; ++i) {
|
for (size_t i = 0; i < candidates->size; ++i) {
|
||||||
auto token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id);
|
const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id);
|
||||||
if (token_iter == last_tokens + last_tokens_size) {
|
if (token_iter == last_tokens + last_tokens_size) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
@ -1872,7 +1875,7 @@ llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_da
|
||||||
const int64_t t_start_sample_us = ggml_time_us();
|
const int64_t t_start_sample_us = ggml_time_us();
|
||||||
|
|
||||||
// Find max element
|
// Find max element
|
||||||
auto max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
|
auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
|
||||||
return a.logit < b.logit;
|
return a.logit < b.logit;
|
||||||
});
|
});
|
||||||
|
|
||||||
|
@ -1925,7 +1928,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||||
nthread = std::thread::hardware_concurrency();
|
nthread = std::thread::hardware_concurrency();
|
||||||
}
|
}
|
||||||
|
|
||||||
std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp.c_str(), /*use_mmap*/ false,
|
std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp, /*use_mmap*/ false,
|
||||||
/*vocab_only*/ false));
|
/*vocab_only*/ false));
|
||||||
llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), ftype);
|
llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), ftype);
|
||||||
|
|
||||||
|
@ -1979,7 +1982,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||||
} else if (tensor.type == GGML_TYPE_F16) {
|
} else if (tensor.type == GGML_TYPE_F16) {
|
||||||
f32_conv_buf.resize(nelements * sizeof(float));
|
f32_conv_buf.resize(nelements * sizeof(float));
|
||||||
f32_data = (float *) f32_conv_buf.addr;
|
f32_data = (float *) f32_conv_buf.addr;
|
||||||
auto f16_data = (const ggml_fp16_t *) tensor.data;
|
const auto * f16_data = (const ggml_fp16_t *) tensor.data;
|
||||||
for (size_t i = 0; i < nelements; i++) {
|
for (size_t i = 0; i < nelements; i++) {
|
||||||
f32_data[i] = ggml_fp16_to_fp32(f16_data[i]);
|
f32_data[i] = ggml_fp16_to_fp32(f16_data[i]);
|
||||||
}
|
}
|
||||||
|
@ -2010,21 +2013,31 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||||
size_t first = counter; counter += chunk_size;
|
size_t first = counter; counter += chunk_size;
|
||||||
if (first >= nelements) {
|
if (first >= nelements) {
|
||||||
if (!local_hist.empty()) {
|
if (!local_hist.empty()) {
|
||||||
for (int j=0; j<int(local_hist.size()); ++j) hist_cur[j] += local_hist[j];
|
for (int j=0; j<int(local_hist.size()); ++j) {
|
||||||
|
hist_cur[j] += local_hist[j];
|
||||||
|
}
|
||||||
new_size += local_size;
|
new_size += local_size;
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
lock.unlock();
|
lock.unlock();
|
||||||
size_t last = std::min(nelements, first + chunk_size);
|
size_t last = std::min(nelements, first + chunk_size);
|
||||||
if (local_hist.empty()) local_hist.resize(hist_cur.size(), 0);
|
if (local_hist.empty()) {
|
||||||
|
local_hist.resize(hist_cur.size(), 0);
|
||||||
|
}
|
||||||
local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
|
local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
if (int(workers.size()) < nthread_use - 1) workers.resize(nthread_use - 1);
|
if ((int) workers.size() < nthread_use - 1) {
|
||||||
for (int it = 0; it < nthread_use - 1; ++it) workers[it] = std::thread(compute);
|
workers.resize(nthread_use - 1);
|
||||||
|
}
|
||||||
|
for (int it = 0; it < nthread_use - 1; ++it) {
|
||||||
|
workers[it] = std::thread(compute);
|
||||||
|
}
|
||||||
compute();
|
compute();
|
||||||
for (int it = 0; it < nthread_use - 1; ++it) workers[it].join();
|
for (int it = 0; it < nthread_use - 1; ++it) {
|
||||||
|
workers[it].join();
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
|
printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
|
||||||
|
@ -2222,7 +2235,8 @@ int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char *
|
||||||
fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model);
|
fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model);
|
||||||
model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*vocab_only*/ false));
|
model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*vocab_only*/ false));
|
||||||
|
|
||||||
size_t ctx_size, mmapped_size;
|
size_t ctx_size;
|
||||||
|
size_t mmapped_size;
|
||||||
model_loader->calc_sizes(&ctx_size, &mmapped_size);
|
model_loader->calc_sizes(&ctx_size, &mmapped_size);
|
||||||
base_buf.resize(ctx_size);
|
base_buf.resize(ctx_size);
|
||||||
|
|
||||||
|
@ -2261,8 +2275,12 @@ int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char *
|
||||||
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
||||||
}
|
}
|
||||||
|
|
||||||
std::string name(length, 0);
|
std::string name;
|
||||||
fin.read(&name[0], length);
|
{
|
||||||
|
char buf[1024];
|
||||||
|
fin.read(buf, length);
|
||||||
|
name = std::string(buf, length);
|
||||||
|
}
|
||||||
|
|
||||||
// check for lora suffix and get the type of tensor
|
// check for lora suffix and get the type of tensor
|
||||||
const std::string lora_suffix = ".lora";
|
const std::string lora_suffix = ".lora";
|
||||||
|
@ -2277,7 +2295,7 @@ int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char *
|
||||||
base_name.erase(pos);
|
base_name.erase(pos);
|
||||||
// fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
|
// fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
|
||||||
|
|
||||||
if (model_tensors.find(base_name.data()) == model_tensors.end()) {
|
if (model_tensors.find(base_name) == model_tensors.end()) {
|
||||||
fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
|
fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
@ -2379,10 +2397,11 @@ int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char *
|
||||||
lora_tensors.clear();
|
lora_tensors.clear();
|
||||||
|
|
||||||
n_tensors++;
|
n_tensors++;
|
||||||
if (n_tensors % 4 == 0)
|
if (n_tensors % 4 == 0) {
|
||||||
fprintf(stderr, ".");
|
fprintf(stderr, ".");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// TODO: this should be in a destructor, it will leak on failure
|
// TODO: this should be in a destructor, it will leak on failure
|
||||||
ggml_free(lora_ctx);
|
ggml_free(lora_ctx);
|
||||||
|
@ -2409,7 +2428,7 @@ int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
|
||||||
return ctx->model.kv_self.n;
|
return ctx->model.kv_self.n;
|
||||||
}
|
}
|
||||||
|
|
||||||
#define LLAMA_MAX_RNG_STATE 64*1024
|
#define LLAMA_MAX_RNG_STATE (64*1024)
|
||||||
|
|
||||||
void llama_set_rng_seed(struct llama_context * ctx, int seed) {
|
void llama_set_rng_seed(struct llama_context * ctx, int seed) {
|
||||||
if (seed < 0) {
|
if (seed < 0) {
|
||||||
|
@ -2668,7 +2687,7 @@ bool llama_load_session_file(struct llama_context * ctx, const char * path_sessi
|
||||||
const uint32_t magic = file.read_u32();
|
const uint32_t magic = file.read_u32();
|
||||||
const uint32_t version = file.read_u32();
|
const uint32_t version = file.read_u32();
|
||||||
|
|
||||||
if (!(magic == LLAMA_SESSION_MAGIC && version == LLAMA_SESSION_VERSION)) {
|
if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
|
||||||
fprintf(stderr, "%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
|
fprintf(stderr, "%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in a new issue