2023-03-22 05:32:36 +00:00
# include "llama.h"
# include "ggml.h"
# include <cinttypes>
# include <fstream>
# include <random>
2023-03-24 21:17:37 +00:00
# include <map>
2023-03-22 05:32:36 +00:00
# include <unordered_map>
# include <queue>
# include <regex>
# include <cassert>
2023-03-22 08:55:45 +00:00
# include <cstring>
2023-03-22 05:32:36 +00:00
2023-03-24 21:17:37 +00:00
# define LLAMA_USE_SCRATCH
# define LLAMA_MAX_SCRATCH_BUFFERS 16
# define LLAMA_ASSERT(x) \
do { \
if ( ! ( x ) ) { \
fprintf ( stderr , " LLAMA_ASSERT: %s:%d: %s \n " , __FILE__ , __LINE__ , # x ) ; \
abort ( ) ; \
} \
} while ( 0 )
2023-03-22 05:32:36 +00:00
// determine number of model parts based on the dimension
static const std : : unordered_map < int , int > LLAMA_N_PARTS = {
{ 4096 , 1 } ,
{ 5120 , 2 } ,
{ 6656 , 4 } ,
{ 8192 , 8 } ,
} ;
2023-03-24 21:17:37 +00:00
// available llama models
enum e_model {
MODEL_UNKNOWN ,
MODEL_7B ,
MODEL_13B ,
MODEL_30B ,
MODEL_65B ,
} ;
static const size_t MB = 1024 * 1024 ;
// computed for n_ctx == 2048
// TODO: dynamically determine these sizes
// needs modifications in ggml
static const std : : map < e_model , size_t > MEM_REQ_SCRATCH0 = {
{ MODEL_7B , 512ull * MB } ,
{ MODEL_13B , 512ull * MB } ,
{ MODEL_30B , 512ull * MB } ,
{ MODEL_65B , 512ull * MB } ,
} ;
static const std : : map < e_model , size_t > MEM_REQ_SCRATCH1 = {
{ MODEL_7B , 512ull * MB } ,
{ MODEL_13B , 512ull * MB } ,
{ MODEL_30B , 512ull * MB } ,
{ MODEL_65B , 512ull * MB } ,
} ;
// 2*n_embd*n_ctx*n_layer*sizeof(float16)
static const std : : map < e_model , size_t > MEM_REQ_KV_SELF = {
{ MODEL_7B , 1026ull * MB } ,
{ MODEL_13B , 1608ull * MB } ,
{ MODEL_30B , 3124ull * MB } ,
{ MODEL_65B , 5120ull * MB } ,
} ;
// this is mostly needed for temporary mul_mat buffers to dequantize the data
// not actually needed if BLAS is disabled
static const std : : map < e_model , size_t > MEM_REQ_EVAL = {
{ MODEL_7B , 768ull * MB } ,
{ MODEL_13B , 1024ull * MB } ,
{ MODEL_30B , 1280ull * MB } ,
{ MODEL_65B , 1536ull * MB } ,
} ;
2023-03-22 05:32:36 +00:00
// default hparams (LLaMA 7B)
struct llama_hparams {
int32_t n_vocab = 32000 ;
int32_t n_ctx = 512 ; // this is provided as user input?
int32_t n_embd = 4096 ;
int32_t n_mult = 256 ;
int32_t n_head = 32 ;
int32_t n_layer = 32 ;
int32_t n_rot = 64 ;
int32_t f16 = 1 ;
} ;
struct llama_layer {
// normalization
struct ggml_tensor * attention_norm ;
// attention
struct ggml_tensor * wq ;
struct ggml_tensor * wk ;
struct ggml_tensor * wv ;
struct ggml_tensor * wo ;
// normalization
struct ggml_tensor * ffn_norm ;
// ff
struct ggml_tensor * w1 ;
struct ggml_tensor * w2 ;
struct ggml_tensor * w3 ;
} ;
2023-03-24 21:17:37 +00:00
struct llama_kv_cache {
struct ggml_tensor * k ;
struct ggml_tensor * v ;
struct ggml_context * ctx ;
std : : vector < uint8_t > buf ;
int n ; // number of tokens currently in the cache
} ;
2023-03-22 05:32:36 +00:00
struct llama_model {
2023-03-24 21:17:37 +00:00
e_model type = MODEL_UNKNOWN ;
2023-03-22 05:32:36 +00:00
llama_hparams hparams ;
struct ggml_tensor * tok_embeddings ;
struct ggml_tensor * norm ;
struct ggml_tensor * output ;
std : : vector < llama_layer > layers ;
2023-03-24 21:17:37 +00:00
// context
2023-03-22 05:32:36 +00:00
struct ggml_context * ctx ;
2023-03-24 21:17:37 +00:00
// key + value cache for the self attention
// TODO: move to llama_state
struct llama_kv_cache kv_self ;
// the model memory buffer
std : : vector < uint8_t > buf ;
// tensors
int n_loaded ;
2023-03-22 05:32:36 +00:00
std : : unordered_map < std : : string , struct ggml_tensor * > tensors ;
} ;
struct llama_vocab {
using id = int32_t ;
using token = std : : string ;
struct token_score {
token tok ;
float score ;
} ;
std : : unordered_map < token , id > token_to_id ;
std : : vector < token_score > id_to_token ;
} ;
struct llama_context {
std : : mt19937 rng ;
int64_t t_load_us = 0 ;
int64_t t_start_us = 0 ;
int64_t t_sample_us = 0 ;
int64_t t_eval_us = 0 ;
2023-03-25 14:34:23 +00:00
int64_t t_p_eval_us = 0 ;
2023-03-22 05:32:36 +00:00
int32_t n_sample = 0 ; // number of tokens sampled
int32_t n_eval = 0 ; // number of eval calls
2023-03-25 14:34:23 +00:00
int32_t n_p_eval = 0 ; // number of tokens in eval calls for the prompt (with batch size > 1)
2023-03-22 05:32:36 +00:00
llama_model model ;
llama_vocab vocab ;
size_t mem_per_token = 0 ;
// decode output (2-dimensional array: [n_tokens][n_vocab])
std : : vector < float > logits ;
bool logits_all = false ;
2023-03-24 15:05:13 +00:00
// input embedding (1-dimensional array: [n_embd])
std : : vector < float > embedding ;
2023-03-24 21:17:37 +00:00
// memory buffers used to evaluate the model
// TODO: move in llama_state
std : : vector < uint8_t > buf_compute ;
std : : vector < uint8_t > buf_scratch [ LLAMA_MAX_SCRATCH_BUFFERS ] ;
int buf_last = 0 ;
size_t buf_max_size [ LLAMA_MAX_SCRATCH_BUFFERS ] = { 0 } ;
void use_buf ( struct ggml_context * ctx , int i ) {
# if defined(LLAMA_USE_SCRATCH)
size_t last_size = 0 ;
if ( i = = - 1 ) {
last_size = ggml_set_scratch ( ctx , { 0 , 0 , nullptr , } ) ;
} else {
auto & buf = buf_scratch [ i ] ;
last_size = ggml_set_scratch ( ctx , { 0 , buf . size ( ) , buf . data ( ) , } ) ;
}
if ( buf_last > = 0 ) {
buf_max_size [ buf_last ] = std : : max ( buf_max_size [ buf_last ] , last_size ) ;
}
buf_last = i ;
# else
( void ) i ;
( void ) ctx ;
# endif
}
size_t get_buf_max_mem ( int i ) const {
# if defined(LLAMA_USE_SCRATCH)
return buf_max_size [ i ] ;
# else
( void ) i ;
return 0 ;
# endif
}
2023-03-22 05:32:36 +00:00
} ;
2023-03-24 21:17:37 +00:00
//
// kv cache
//
static bool kv_cache_init (
const struct llama_hparams & hparams ,
struct llama_kv_cache & cache ,
ggml_type wtype ,
int n_ctx ) {
const int n_embd = hparams . n_embd ;
const int n_layer = hparams . n_layer ;
const int n_mem = n_layer * n_ctx ;
const int n_elements = n_embd * n_mem ;
2023-03-25 04:38:14 +00:00
cache . buf . resize ( 2u * n_elements * ggml_type_size ( wtype ) + 2u * MB ) ;
2023-03-24 21:17:37 +00:00
struct ggml_init_params params ;
params . mem_size = cache . buf . size ( ) ;
params . mem_buffer = cache . buf . data ( ) ;
cache . ctx = ggml_init ( params ) ;
if ( ! cache . ctx ) {
fprintf ( stderr , " %s: failed to allocate memory for kv cache \n " , __func__ ) ;
return false ;
}
cache . k = ggml_new_tensor_1d ( cache . ctx , wtype , n_elements ) ;
cache . v = ggml_new_tensor_1d ( cache . ctx , wtype , n_elements ) ;
return true ;
}
static void kv_cache_free ( struct llama_kv_cache & cache ) {
if ( cache . ctx ) {
ggml_free ( cache . ctx ) ;
cache . ctx = nullptr ;
}
}
2023-03-22 05:32:36 +00:00
struct llama_context_params llama_context_default_params ( ) {
struct llama_context_params result = {
2023-03-25 05:26:28 +00:00
/*.n_ctx =*/ 512 ,
/*.n_parts =*/ - 1 ,
/*.seed =*/ 0 ,
/*.f16_kv =*/ false ,
/*.logits_all =*/ false ,
/*.vocab_only =*/ false ,
/*.use_mlock =*/ false ,
/*.embedding =*/ false ,
/*.progress_callback =*/ nullptr ,
/*.progress_callback_user_data =*/ nullptr ,
2023-03-22 05:32:36 +00:00
} ;
return result ;
}
//
// model loading
//
static bool llama_model_load (
const std : : string & fname ,
llama_context & lctx ,
int n_ctx ,
int n_parts ,
ggml_type memory_type ,
2023-03-25 05:26:28 +00:00
bool vocab_only ,
llama_progress_callback progress_callback ,
void * progress_callback_user_data ) {
2023-03-22 05:32:36 +00:00
fprintf ( stderr , " %s: loading model from '%s' - please wait ... \n " , __func__ , fname . c_str ( ) ) ;
const int64_t t_start_us = ggml_time_us ( ) ;
lctx . t_start_us = t_start_us ;
std : : vector < char > f_buf ( 1024 * 1024 ) ;
auto & model = lctx . model ;
auto & vocab = lctx . vocab ;
auto fin = std : : ifstream ( fname , std : : ios : : binary ) ;
fin . rdbuf ( ) - > pubsetbuf ( f_buf . data ( ) , f_buf . size ( ) ) ;
if ( ! fin ) {
fprintf ( stderr , " %s: failed to open '%s' \n " , __func__ , fname . c_str ( ) ) ;
return false ;
}
// verify magic
{
uint32_t magic ;
fin . read ( ( char * ) & magic , sizeof ( magic ) ) ;
if ( magic = = LLAMA_FILE_MAGIC_UNVERSIONED ) {
2023-03-28 17:55:42 +00:00
fprintf ( stderr , " %s: invalid model file '%s' (too old, regenerate your model files or convert them with convert-unversioned-ggml-to-ggml.py!) \n " ,
2023-03-22 05:32:36 +00:00
__func__ , fname . c_str ( ) ) ;
return false ;
}
if ( magic ! = LLAMA_FILE_MAGIC ) {
fprintf ( stderr , " %s: invalid model file '%s' (bad magic) \n " , __func__ , fname . c_str ( ) ) ;
return false ;
}
uint32_t format_version ;
fin . read ( ( char * ) & format_version , sizeof ( format_version ) ) ;
if ( format_version ! = LLAMA_FILE_VERSION ) {
fprintf ( stderr , " %s: invalid model file '%s' (unsupported format version % " PRIu32 " , expected %d) \n " ,
__func__ , fname . c_str ( ) , format_version , LLAMA_FILE_VERSION ) ;
return false ;
}
}
int n_ff = 0 ;
// load hparams
{
auto & hparams = model . hparams ;
fin . read ( ( char * ) & hparams . n_vocab , sizeof ( hparams . n_vocab ) ) ;
//fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
fin . read ( ( char * ) & hparams . n_embd , sizeof ( hparams . n_embd ) ) ;
fin . read ( ( char * ) & hparams . n_mult , sizeof ( hparams . n_mult ) ) ;
fin . read ( ( char * ) & hparams . n_head , sizeof ( hparams . n_head ) ) ;
fin . read ( ( char * ) & hparams . n_layer , sizeof ( hparams . n_layer ) ) ;
fin . read ( ( char * ) & hparams . n_rot , sizeof ( hparams . n_rot ) ) ;
fin . read ( ( char * ) & hparams . f16 , sizeof ( hparams . f16 ) ) ;
hparams . n_ctx = n_ctx ;
n_ff = ( ( 2 * ( 4 * hparams . n_embd ) / 3 + hparams . n_mult - 1 ) / hparams . n_mult ) * hparams . n_mult ;
if ( n_parts < 1 ) {
n_parts = LLAMA_N_PARTS . at ( hparams . n_embd ) ;
}
// temp warning to tell the user to use "--n_parts"
if ( hparams . f16 = = 4 & & n_parts ! = 1 ) {
fprintf ( stderr , " %s: GPTQ model detected - are you sure n_parts should be %d? we normally expect it to be 1 \n " , __func__ , n_parts ) ;
fprintf ( stderr , " %s: use '--n_parts 1' if necessary \n " , __func__ ) ;
}
2023-03-24 21:17:37 +00:00
if ( hparams . n_layer = = 32 ) {
model . type = e_model : : MODEL_7B ;
}
if ( hparams . n_layer = = 40 ) {
model . type = e_model : : MODEL_13B ;
}
if ( hparams . n_layer = = 60 ) {
model . type = e_model : : MODEL_30B ;
}
if ( hparams . n_layer = = 80 ) {
model . type = e_model : : MODEL_65B ;
}
2023-03-22 05:32:36 +00:00
fprintf ( stderr , " %s: n_vocab = %d \n " , __func__ , hparams . n_vocab ) ;
fprintf ( stderr , " %s: n_ctx = %d \n " , __func__ , hparams . n_ctx ) ;
fprintf ( stderr , " %s: n_embd = %d \n " , __func__ , hparams . n_embd ) ;
fprintf ( stderr , " %s: n_mult = %d \n " , __func__ , hparams . n_mult ) ;
fprintf ( stderr , " %s: n_head = %d \n " , __func__ , hparams . n_head ) ;
fprintf ( stderr , " %s: n_layer = %d \n " , __func__ , hparams . n_layer ) ;
fprintf ( stderr , " %s: n_rot = %d \n " , __func__ , hparams . n_rot ) ;
fprintf ( stderr , " %s: f16 = %d \n " , __func__ , hparams . f16 ) ;
fprintf ( stderr , " %s: n_ff = %d \n " , __func__ , n_ff ) ;
fprintf ( stderr , " %s: n_parts = %d \n " , __func__ , n_parts ) ;
2023-03-24 21:17:37 +00:00
fprintf ( stderr , " %s: type = %d \n " , __func__ , model . type ) ;
2023-03-22 05:32:36 +00:00
}
// load vocab
{
std : : string word ;
vocab . id_to_token . resize ( model . hparams . n_vocab ) ;
std : : vector < char > tmp ( 64 ) ;
for ( int i = 0 ; i < model . hparams . n_vocab ; i + + ) {
uint32_t len ;
fin . read ( ( char * ) & len , sizeof ( len ) ) ;
word . resize ( len ) ;
if ( len > 0 ) {
tmp . resize ( len ) ;
fin . read ( tmp . data ( ) , len ) ;
word . assign ( tmp . data ( ) , len ) ;
} else {
word . clear ( ) ;
}
float score ;
fin . read ( ( char * ) & score , sizeof ( score ) ) ;
vocab . token_to_id [ word ] = i ;
auto & tok_score = vocab . id_to_token [ i ] ;
tok_score . tok = word ;
tok_score . score = score ;
}
}
if ( vocab_only ) {
return true ;
}
// for the big tensors, we have the option to store the data in 16-bit floats or quantized
// in order to save memory and also to speed up the computation
// wtype is for per-layer weights, while vtype is for other weights
ggml_type wtype , vtype ;
switch ( model . hparams . f16 ) {
case 0 : wtype = vtype = GGML_TYPE_F32 ; break ;
case 1 : wtype = vtype = GGML_TYPE_F16 ; break ;
case 2 : wtype = vtype = GGML_TYPE_Q4_0 ; break ;
case 3 : wtype = vtype = GGML_TYPE_Q4_1 ; break ;
case 4 : wtype = GGML_TYPE_Q4_1 ; vtype = GGML_TYPE_F16 ; break ;
default :
{
fprintf ( stderr , " %s: invalid model file '%s' (bad f16 value %d) \n " ,
__func__ , fname . c_str ( ) , model . hparams . f16 ) ;
return false ;
}
}
auto & ctx = model . ctx ;
size_t ctx_size = 0 ;
{
const auto & hparams = model . hparams ;
const int n_embd = hparams . n_embd ;
const int n_layer = hparams . n_layer ;
const int n_ctx = hparams . n_ctx ;
const int n_vocab = hparams . n_vocab ;
ctx_size + = n_embd * n_vocab * ggml_type_sizef ( vtype ) ; // tok_embeddings
ctx_size + = n_embd * ggml_type_sizef ( GGML_TYPE_F32 ) ; // norm
ctx_size + = n_embd * n_vocab * ggml_type_sizef ( vtype ) ; // output
ctx_size + = n_layer * ( n_embd * ggml_type_sizef ( GGML_TYPE_F32 ) ) ; // attention_norm
ctx_size + = n_layer * ( n_embd * n_embd * ggml_type_sizef ( wtype ) ) ; // wq
ctx_size + = n_layer * ( n_embd * n_embd * ggml_type_sizef ( wtype ) ) ; // wk
ctx_size + = n_layer * ( n_embd * n_embd * ggml_type_sizef ( wtype ) ) ; // wv
ctx_size + = n_layer * ( n_embd * n_embd * ggml_type_sizef ( wtype ) ) ; // wo
ctx_size + = n_layer * ( n_embd * ggml_type_sizef ( GGML_TYPE_F32 ) ) ; // ffn_norm
ctx_size + = n_layer * ( n_ff * n_embd * ggml_type_sizef ( wtype ) ) ; // w1
ctx_size + = n_layer * ( n_ff * n_embd * ggml_type_sizef ( wtype ) ) ; // w2
ctx_size + = n_layer * ( n_ff * n_embd * ggml_type_sizef ( wtype ) ) ; // w3
ctx_size + = n_ctx * n_layer * n_embd * ggml_type_sizef ( memory_type ) ; // memory_k
ctx_size + = n_ctx * n_layer * n_embd * ggml_type_sizef ( memory_type ) ; // memory_v
ctx_size + = ( 5 + 10 * n_layer ) * 256 ; // object overhead
fprintf ( stderr , " %s: ggml ctx size = %6.2f MB \n " , __func__ , ctx_size / ( 1024.0 * 1024.0 ) ) ;
}
2023-03-24 21:17:37 +00:00
// print memory requirements
{
const size_t scale = memory_type = = GGML_TYPE_F32 ? 2 : 1 ;
// this is the total memory required to run the inference
const size_t mem_required =
ctx_size +
MEM_REQ_SCRATCH0 . at ( model . type ) +
MEM_REQ_SCRATCH1 . at ( model . type ) +
MEM_REQ_EVAL . at ( model . type ) ;
// this is the memory required by one llama_state
const size_t mem_required_state =
scale * MEM_REQ_KV_SELF . at ( model . type ) ;
fprintf ( stderr , " %s: mem required = %7.2f MB (+ %7.2f MB per state) \n " , __func__ ,
mem_required / 1024.0 / 1024.0 , mem_required_state / 1024.0 / 1024.0 ) ;
}
2023-03-22 05:32:36 +00:00
// create the ggml context
{
2023-03-24 21:17:37 +00:00
lctx . model . buf . resize ( ctx_size ) ;
2023-03-22 05:32:36 +00:00
struct ggml_init_params params = {
2023-03-24 21:17:37 +00:00
/*.mem_size =*/ lctx . model . buf . size ( ) ,
/*.mem_buffer =*/ lctx . model . buf . data ( ) ,
2023-03-22 05:32:36 +00:00
} ;
model . ctx = ggml_init ( params ) ;
if ( ! model . ctx ) {
fprintf ( stderr , " %s: ggml_init() failed \n " , __func__ ) ;
return false ;
}
}
// prepare memory for the weights
{
const auto & hparams = model . hparams ;
const int n_embd = hparams . n_embd ;
const int n_layer = hparams . n_layer ;
const int n_vocab = hparams . n_vocab ;
model . layers . resize ( n_layer ) ;
model . tok_embeddings = ggml_new_tensor_2d ( ctx , vtype , n_embd , n_vocab ) ;
model . norm = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_embd ) ;
model . output = ggml_new_tensor_2d ( ctx , vtype , n_embd , n_vocab ) ;
// map by name
model . tensors [ " tok_embeddings.weight " ] = model . tok_embeddings ;
model . tensors [ " norm.weight " ] = model . norm ;
model . tensors [ " output.weight " ] = model . output ;
for ( int i = 0 ; i < n_layer ; + + i ) {
auto & layer = model . layers [ i ] ;
layer . attention_norm = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_embd ) ;
layer . wq = ggml_new_tensor_2d ( ctx , wtype , n_embd , n_embd ) ;
layer . wk = ggml_new_tensor_2d ( ctx , wtype , n_embd , n_embd ) ;
layer . wv = ggml_new_tensor_2d ( ctx , wtype , n_embd , n_embd ) ;
layer . wo = ggml_new_tensor_2d ( ctx , wtype , n_embd , n_embd ) ;
layer . ffn_norm = ggml_new_tensor_1d ( ctx , GGML_TYPE_F32 , n_embd ) ;
layer . w1 = ggml_new_tensor_2d ( ctx , wtype , n_embd , n_ff ) ;
layer . w2 = ggml_new_tensor_2d ( ctx , wtype , n_ff , n_embd ) ;
layer . w3 = ggml_new_tensor_2d ( ctx , wtype , n_embd , n_ff ) ;
// map by name
model . tensors [ " layers. " + std : : to_string ( i ) + " .attention_norm.weight " ] = layer . attention_norm ;
model . tensors [ " layers. " + std : : to_string ( i ) + " .attention.wq.weight " ] = layer . wq ;
model . tensors [ " layers. " + std : : to_string ( i ) + " .attention.wk.weight " ] = layer . wk ;
model . tensors [ " layers. " + std : : to_string ( i ) + " .attention.wv.weight " ] = layer . wv ;
model . tensors [ " layers. " + std : : to_string ( i ) + " .attention.wo.weight " ] = layer . wo ;
model . tensors [ " layers. " + std : : to_string ( i ) + " .ffn_norm.weight " ] = layer . ffn_norm ;
model . tensors [ " layers. " + std : : to_string ( i ) + " .feed_forward.w1.weight " ] = layer . w1 ;
model . tensors [ " layers. " + std : : to_string ( i ) + " .feed_forward.w2.weight " ] = layer . w2 ;
model . tensors [ " layers. " + std : : to_string ( i ) + " .feed_forward.w3.weight " ] = layer . w3 ;
}
}
const size_t file_offset = fin . tellg ( ) ;
fin . close ( ) ;
std : : vector < uint8_t > tmp ;
2023-03-25 05:26:28 +00:00
if ( progress_callback ) {
progress_callback ( 0.0 , progress_callback_user_data ) ;
}
2023-03-22 05:32:36 +00:00
for ( int i = 0 ; i < n_parts ; + + i ) {
const int part_id = i ;
//const int part_id = n_parts - i - 1;
std : : string fname_part = fname ;
if ( i > 0 ) {
fname_part + = " . " + std : : to_string ( i ) ;
}
fprintf ( stderr , " %s: loading model part %d/%d from '%s' \n " , __func__ , i + 1 , n_parts , fname_part . c_str ( ) ) ;
fin = std : : ifstream ( fname_part , std : : ios : : binary ) ;
fin . rdbuf ( ) - > pubsetbuf ( f_buf . data ( ) , f_buf . size ( ) ) ;
2023-03-25 05:26:28 +00:00
fin . seekg ( 0 , fin . end ) ;
const size_t file_size = fin . tellg ( ) ;
2023-03-22 05:32:36 +00:00
fin . seekg ( file_offset ) ;
// load weights
{
size_t total_size = 0 ;
2023-03-24 21:17:37 +00:00
model . n_loaded = 0 ;
2023-03-22 05:32:36 +00:00
fprintf ( stderr , " %s: " , __func__ ) ;
while ( true ) {
int32_t n_dims ;
int32_t length ;
int32_t ftype ;
fin . read ( reinterpret_cast < char * > ( & n_dims ) , sizeof ( n_dims ) ) ;
fin . read ( reinterpret_cast < char * > ( & length ) , sizeof ( length ) ) ;
fin . read ( reinterpret_cast < char * > ( & ftype ) , sizeof ( ftype ) ) ;
if ( fin . eof ( ) ) {
break ;
}
int32_t nelements = 1 ;
int32_t ne [ 2 ] = { 1 , 1 } ;
for ( int i = 0 ; i < n_dims ; + + i ) {
fin . read ( reinterpret_cast < char * > ( & ne [ i ] ) , sizeof ( ne [ i ] ) ) ;
nelements * = ne [ i ] ;
}
std : : string name ( length , 0 ) ;
fin . read ( & name [ 0 ] , length ) ;
if ( model . tensors . find ( name . data ( ) ) = = model . tensors . end ( ) ) {
fprintf ( stderr , " %s: unknown tensor '%s' in model file \n " , __func__ , name . data ( ) ) ;
return false ;
}
// split_type = 0: split by columns
// split_type = 1: split by rows
int split_type = 0 ;
// split_type = 0:
// regex:
// - tok_embeddings.*
// - layers.*.attention.wo.weight
// - layers.*.feed_forward.w2.weight
// split_type = 1:
// regex:
// - output.*
// - layers.*.attention.wq.weight
// - layers.*.attention.wk.weight
// - layers.*.attention.wv.weight
// - layers.*.feed_forward.w1.weight
// - layers.*.feed_forward.w3.weight
if ( name . find ( " tok_embeddings " ) ! = std : : string : : npos ) {
split_type = 0 ;
} else if ( name . find ( " layers " ) ! = std : : string : : npos ) {
if ( name . find ( " attention.wo.weight " ) ! = std : : string : : npos ) {
split_type = 0 ;
} else if ( name . find ( " feed_forward.w2.weight " ) ! = std : : string : : npos ) {
split_type = 0 ;
} else {
split_type = 1 ;
}
} else if ( name . find ( " output " ) ! = std : : string : : npos ) {
split_type = 1 ;
}
auto tensor = model . tensors [ name . data ( ) ] ;
if ( n_dims = = 1 ) {
if ( ggml_nelements ( tensor ) ! = nelements ) {
fprintf ( stderr , " %s: tensor '%s' has wrong size in model file \n " , __func__ , name . data ( ) ) ;
return false ;
}
} else {
if ( ggml_nelements ( tensor ) / n_parts ! = nelements ) {
fprintf ( stderr , " %s: tensor '%s' has wrong size in model file \n " , __func__ , name . data ( ) ) ;
return false ;
}
}
if ( n_dims = = 1 ) {
if ( tensor - > ne [ 0 ] ! = ne [ 0 ] | | tensor - > ne [ 1 ] ! = ne [ 1 ] ) {
fprintf ( stderr , " %s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d] \n " ,
__func__ , name . data ( ) , tensor - > ne [ 0 ] , tensor - > ne [ 1 ] , ne [ 0 ] , ne [ 1 ] ) ;
return false ;
}
} else {
if ( split_type = = 0 ) {
if ( tensor - > ne [ 0 ] / n_parts ! = ne [ 0 ] | | tensor - > ne [ 1 ] ! = ne [ 1 ] ) {
fprintf ( stderr , " %s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d] \n " ,
__func__ , name . data ( ) , tensor - > ne [ 0 ] / n_parts , tensor - > ne [ 1 ] , ne [ 0 ] , ne [ 1 ] ) ;
return false ;
}
} else {
if ( tensor - > ne [ 0 ] ! = ne [ 0 ] | | tensor - > ne [ 1 ] / n_parts ! = ne [ 1 ] ) {
fprintf ( stderr , " %s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d] \n " ,
__func__ , name . data ( ) , tensor - > ne [ 0 ] , tensor - > ne [ 1 ] / n_parts , ne [ 0 ] , ne [ 1 ] ) ;
return false ;
}
}
}
if ( 0 ) {
static const char * ftype_str [ ] = { " f32 " , " f16 " , " q4_0 " , " q4_1 " , } ;
fprintf ( stderr , " %24s - [%5d, %5d], type = %6s, split = %d \n " , name . data ( ) , ne [ 0 ] , ne [ 1 ] , ftype_str [ ftype ] , split_type ) ;
}
size_t bpe = 0 ;
switch ( ftype ) {
case 0 : bpe = ggml_type_size ( GGML_TYPE_F32 ) ; break ;
case 1 : bpe = ggml_type_size ( GGML_TYPE_F16 ) ; break ;
case 2 : bpe = ggml_type_size ( GGML_TYPE_Q4_0 ) ; assert ( ne [ 0 ] % 64 = = 0 ) ; break ;
case 3 : bpe = ggml_type_size ( GGML_TYPE_Q4_1 ) ; assert ( ne [ 0 ] % 64 = = 0 ) ; break ;
default :
{
fprintf ( stderr , " %s: unknown ftype %d in model file \n " , __func__ , ftype ) ;
return false ;
}
} ;
if ( n_dims = = 1 | | n_parts = = 1 ) {
if ( ( nelements * bpe ) / ggml_blck_size ( tensor - > type ) ! = ggml_nbytes ( tensor ) ) {
fprintf ( stderr , " %s: tensor '%s' has wrong size in model file: got %zu, expected %zu \n " ,
__func__ , name . data ( ) , ggml_nbytes ( tensor ) , nelements * bpe ) ;
return false ;
}
if ( part_id = = 0 ) {
fin . read ( reinterpret_cast < char * > ( tensor - > data ) , ggml_nbytes ( tensor ) ) ;
} else {
fin . seekg ( ggml_nbytes ( tensor ) , std : : ios : : cur ) ;
}
total_size + = ggml_nbytes ( tensor ) ;
} else {
if ( ( nelements * bpe ) / ggml_blck_size ( tensor - > type ) ! = ggml_nbytes ( tensor ) / n_parts ) {
fprintf ( stderr , " %s: tensor '%s' has wrong size in model file: got %zu, expected %zu \n " ,
__func__ , name . data ( ) , ggml_nbytes ( tensor ) / n_parts , nelements * bpe ) ;
return false ;
}
if ( split_type = = 0 ) {
const int np0 = ne [ 0 ] ;
const size_t row_size = ( tensor - > ne [ 0 ] / ggml_blck_size ( tensor - > type ) ) * ggml_type_size ( tensor - > type ) ;
assert ( row_size = = tensor - > nb [ 1 ] ) ;
for ( int i1 = 0 ; i1 < ne [ 1 ] ; + + i1 ) {
const size_t offset_row = i1 * row_size ;
const size_t offset = offset_row + ( ( part_id * np0 ) / ggml_blck_size ( tensor - > type ) ) * ggml_type_size ( tensor - > type ) ;
fin . read ( reinterpret_cast < char * > ( tensor - > data ) + offset , row_size / n_parts ) ;
}
} else {
const int np1 = ne [ 1 ] ;
const size_t row_size = ( tensor - > ne [ 0 ] / ggml_blck_size ( tensor - > type ) ) * ggml_type_size ( tensor - > type ) ;
for ( int i1 = 0 ; i1 < ne [ 1 ] ; + + i1 ) {
const size_t offset_row = ( i1 + part_id * np1 ) * row_size ;
fin . read ( reinterpret_cast < char * > ( tensor - > data ) + offset_row , row_size ) ;
}
}
total_size + = ggml_nbytes ( tensor ) / n_parts ;
}
//fprintf(stderr, "%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
2023-03-24 21:17:37 +00:00
model . n_loaded + + ;
// progress
2023-03-25 05:26:28 +00:00
if ( progress_callback ) {
2023-03-28 16:48:20 +00:00
float current_file_progress = float ( size_t ( fin . tellg ( ) ) - file_offset ) / float ( file_size - file_offset ) ;
float current_progress = ( float ( i ) + current_file_progress ) / float ( n_parts ) ;
2023-03-25 05:26:28 +00:00
progress_callback ( current_progress , progress_callback_user_data ) ;
}
2023-03-24 21:17:37 +00:00
if ( model . n_loaded % 8 = = 0 ) {
2023-03-22 05:32:36 +00:00
fprintf ( stderr , " . " ) ;
fflush ( stderr ) ;
}
}
fprintf ( stderr , " done \n " ) ;
2023-03-24 21:17:37 +00:00
fprintf ( stderr , " %s: model size = %8.2f MB / num tensors = %d \n " , __func__ , total_size / 1024.0 / 1024.0 , model . n_loaded ) ;
if ( model . n_loaded = = 0 ) {
fprintf ( stderr , " %s: WARN no tensors loaded from model file - assuming empty model for testing \n " , __func__ ) ;
} else if ( model . n_loaded ! = ( int ) model . tensors . size ( ) ) {
fprintf ( stderr , " %s: ERROR not all tensors loaded from model file - expected %zu, got %d \n " , __func__ , model . tensors . size ( ) , model . n_loaded ) ;
return false ;
}
2023-03-22 05:32:36 +00:00
}
fin . close ( ) ;
}
lctx . t_load_us = ggml_time_us ( ) - t_start_us ;
2023-03-25 05:26:28 +00:00
if ( progress_callback ) {
progress_callback ( 1.0 , progress_callback_user_data ) ;
}
2023-03-22 05:32:36 +00:00
return true ;
}
// evaluate the transformer
//
// - lctx: llama context
// - tokens: new batch of tokens to process
// - n_past: the context size so far
// - n_threads: number of threads to use
//
static bool llama_eval_internal (
llama_context & lctx ,
const llama_token * tokens ,
const int n_tokens ,
const int n_past ,
const int n_threads ) {
const int64_t t_start_us = ggml_time_us ( ) ;
const int N = n_tokens ;
const auto & model = lctx . model ;
const auto & hparams = model . hparams ;
2023-03-24 21:17:37 +00:00
auto & kv_self = model . kv_self ;
LLAMA_ASSERT ( ! ! kv_self . ctx ) ;
2023-03-22 05:32:36 +00:00
const int n_embd = hparams . n_embd ;
const int n_layer = hparams . n_layer ;
const int n_ctx = hparams . n_ctx ;
const int n_head = hparams . n_head ;
const int n_vocab = hparams . n_vocab ;
const int n_rot = hparams . n_embd / hparams . n_head ;
auto & mem_per_token = lctx . mem_per_token ;
2023-03-24 21:17:37 +00:00
auto & buf_compute = lctx . buf_compute ;
2023-03-22 05:32:36 +00:00
struct ggml_init_params params = {
2023-03-24 21:17:37 +00:00
/*.mem_size =*/ buf_compute . size ( ) ,
/*.mem_buffer =*/ buf_compute . data ( ) ,
2023-03-22 05:32:36 +00:00
} ;
struct ggml_context * ctx0 = ggml_init ( params ) ;
2023-03-25 15:03:10 +00:00
// for big prompts, if BLAS is enabled, it is better to use only one thread
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
2023-03-22 05:32:36 +00:00
ggml_cgraph gf = { } ;
2023-03-25 15:03:10 +00:00
gf . n_threads = N > 255 & & ggml_cpu_has_blas ( ) ? 1 : n_threads ;
2023-03-22 05:32:36 +00:00
struct ggml_tensor * embd = ggml_new_tensor_1d ( ctx0 , GGML_TYPE_I32 , N ) ;
memcpy ( embd - > data , tokens , N * ggml_element_size ( embd ) ) ;
struct ggml_tensor * inpL = ggml_get_rows ( ctx0 , model . tok_embeddings , embd ) ;
for ( int il = 0 ; il < n_layer ; + + il ) {
struct ggml_tensor * inpSA = inpL ;
struct ggml_tensor * cur ;
2023-03-24 21:17:37 +00:00
lctx . use_buf ( ctx0 , 0 ) ;
2023-03-22 05:32:36 +00:00
// norm
{
cur = ggml_rms_norm ( ctx0 , inpL ) ;
// cur = attention_norm*cur
cur = ggml_mul ( ctx0 ,
ggml_repeat ( ctx0 , model . layers [ il ] . attention_norm , cur ) ,
cur ) ;
}
// self-attention
{
struct ggml_tensor * Qcur = ggml_mul_mat ( ctx0 , model . layers [ il ] . wq , cur ) ;
struct ggml_tensor * Kcur = ggml_mul_mat ( ctx0 , model . layers [ il ] . wk , cur ) ;
struct ggml_tensor * Vcur = ggml_mul_mat ( ctx0 , model . layers [ il ] . wv , cur ) ;
// store key and value to memory
if ( N > = 1 ) {
2023-03-24 21:17:37 +00:00
struct ggml_tensor * k = ggml_view_1d ( ctx0 , kv_self . k , N * n_embd , ( ggml_element_size ( kv_self . k ) * n_embd ) * ( il * n_ctx + n_past ) ) ;
struct ggml_tensor * v = ggml_view_1d ( ctx0 , kv_self . v , N * n_embd , ( ggml_element_size ( kv_self . v ) * n_embd ) * ( il * n_ctx + n_past ) ) ;
2023-03-22 05:32:36 +00:00
ggml_build_forward_expand ( & gf , ggml_cpy ( ctx0 , Kcur , k ) ) ;
ggml_build_forward_expand ( & gf , ggml_cpy ( ctx0 , Vcur , v ) ) ;
}
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
struct ggml_tensor * Q =
ggml_permute ( ctx0 ,
ggml_rope ( ctx0 ,
ggml_cpy ( ctx0 ,
Qcur ,
ggml_new_tensor_3d ( ctx0 , GGML_TYPE_F32 , n_embd / n_head , n_head , N ) ) ,
n_past , n_rot , 0 ) ,
0 , 2 , 1 , 3 ) ;
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
struct ggml_tensor * K =
ggml_permute ( ctx0 ,
ggml_rope ( ctx0 ,
ggml_reshape_3d ( ctx0 ,
2023-03-24 21:17:37 +00:00
ggml_view_1d ( ctx0 , kv_self . k , ( n_past + N ) * n_embd , il * n_ctx * ggml_element_size ( kv_self . k ) * n_embd ) ,
2023-03-22 05:32:36 +00:00
n_embd / n_head , n_head , n_past + N ) ,
n_past , n_rot , 1 ) ,
0 , 2 , 1 , 3 ) ;
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat ( ctx0 , K , Q ) ;
// KQ_scaled = KQ / sqrt(n_embd/n_head)
struct ggml_tensor * KQ_scaled =
ggml_scale ( ctx0 ,
KQ ,
2023-03-28 16:48:20 +00:00
ggml_new_f32 ( ctx0 , 1.0f / sqrtf ( float ( n_embd ) / n_head ) ) ) ;
2023-03-22 05:32:36 +00:00
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf ( ctx0 , KQ_scaled , n_past ) ;
// KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max ( ctx0 , KQ_masked ) ;
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
struct ggml_tensor * V_trans =
2023-03-23 21:22:01 +00:00
ggml_cpy ( ctx0 ,
ggml_permute ( ctx0 ,
ggml_reshape_3d ( ctx0 ,
2023-03-24 21:17:37 +00:00
ggml_view_1d ( ctx0 , kv_self . v , ( n_past + N ) * n_embd , il * n_ctx * ggml_element_size ( kv_self . v ) * n_embd ) ,
2023-03-23 21:22:01 +00:00
n_embd / n_head , n_head , n_past + N ) ,
1 , 2 , 0 , 3 ) ,
2023-03-25 14:09:54 +00:00
ggml_new_tensor_3d ( ctx0 , kv_self . v - > type , n_past + N , n_embd / n_head , n_head ) ) ;
2023-03-22 05:32:36 +00:00
// KQV = transpose(V) * KQ_soft_max
struct ggml_tensor * KQV = ggml_mul_mat ( ctx0 , V_trans , KQ_soft_max ) ;
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute ( ctx0 , KQV , 0 , 2 , 1 , 3 ) ;
// cur = KQV_merged.contiguous().view(n_embd, N)
cur = ggml_cpy ( ctx0 ,
KQV_merged ,
ggml_new_tensor_2d ( ctx0 , GGML_TYPE_F32 , n_embd , N ) ) ;
// projection (no bias)
cur = ggml_mul_mat ( ctx0 ,
model . layers [ il ] . wo ,
cur ) ;
}
2023-03-24 21:17:37 +00:00
lctx . use_buf ( ctx0 , 1 ) ;
2023-03-22 05:32:36 +00:00
struct ggml_tensor * inpFF = ggml_add ( ctx0 , cur , inpSA ) ;
// feed-forward network
{
// norm
{
cur = ggml_rms_norm ( ctx0 , inpFF ) ;
// cur = ffn_norm*cur
cur = ggml_mul ( ctx0 ,
ggml_repeat ( ctx0 , model . layers [ il ] . ffn_norm , cur ) ,
cur ) ;
}
struct ggml_tensor * tmp = ggml_mul_mat ( ctx0 ,
model . layers [ il ] . w3 ,
cur ) ;
cur = ggml_mul_mat ( ctx0 ,
model . layers [ il ] . w1 ,
cur ) ;
// SILU activation
cur = ggml_silu ( ctx0 , cur ) ;
cur = ggml_mul ( ctx0 , cur , tmp ) ;
cur = ggml_mul_mat ( ctx0 ,
model . layers [ il ] . w2 ,
cur ) ;
}
2023-03-24 21:17:37 +00:00
cur = ggml_add ( ctx0 , cur , inpFF ) ;
2023-03-22 05:32:36 +00:00
// input for next layer
inpL = cur ;
}
2023-03-24 21:17:37 +00:00
lctx . use_buf ( ctx0 , 0 ) ;
2023-03-24 15:05:13 +00:00
// used at the end to optionally extract the embeddings
struct ggml_tensor * embeddings = NULL ;
2023-03-22 05:32:36 +00:00
// norm
{
2023-03-24 21:17:37 +00:00
2023-03-22 05:32:36 +00:00
inpL = ggml_rms_norm ( ctx0 , inpL ) ;
// inpL = norm*inpL
inpL = ggml_mul ( ctx0 ,
ggml_repeat ( ctx0 , model . norm , inpL ) ,
inpL ) ;
2023-03-24 15:05:13 +00:00
embeddings = inpL ;
2023-03-22 05:32:36 +00:00
}
// lm_head
2023-03-24 21:17:37 +00:00
inpL = ggml_mul_mat ( ctx0 , model . output , inpL ) ;
lctx . use_buf ( ctx0 , - 1 ) ;
2023-03-22 05:32:36 +00:00
// logits -> probs
//inpL = ggml_soft_max(ctx0, inpL);
// run the computation
ggml_build_forward_expand ( & gf , inpL ) ;
ggml_graph_compute ( ctx0 , & gf ) ;
//if (n_past%100 == 0) {
// ggml_graph_print (&gf);
// ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
//}
//embd_w.resize(n_vocab*N);
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
2023-03-24 15:05:13 +00:00
// extract logits
{
auto & logits_out = lctx . logits ;
if ( lctx . logits_all ) {
logits_out . resize ( n_vocab * N ) ;
memcpy ( logits_out . data ( ) , ( float * ) ggml_get_data ( inpL ) , sizeof ( float ) * n_vocab * N ) ;
} else {
// return result for just the last token
logits_out . resize ( n_vocab ) ;
memcpy ( logits_out . data ( ) , ( float * ) ggml_get_data ( inpL ) + ( n_vocab * ( N - 1 ) ) , sizeof ( float ) * n_vocab ) ;
}
}
// extract embeddings
if ( lctx . embedding . size ( ) ) {
auto & embedding_out = lctx . embedding ;
2023-03-22 05:32:36 +00:00
2023-03-24 15:05:13 +00:00
embedding_out . resize ( n_embd ) ;
memcpy ( embedding_out . data ( ) , ( float * ) ggml_get_data ( embeddings ) + ( n_embd * ( N - 1 ) ) , sizeof ( float ) * n_embd ) ;
2023-03-22 05:32:36 +00:00
}
2023-03-24 04:22:28 +00:00
if ( mem_per_token = = 0 ) {
mem_per_token = ggml_used_mem ( ctx0 ) / N ;
2023-03-22 05:32:36 +00:00
}
2023-03-24 21:17:37 +00:00
#if 0
printf ( " \n %s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB \n " , __func__ ,
ggml_used_mem ( ctx0 ) / 1024.0 / 1024.0 ,
lctx . get_buf_max_mem ( 0 ) / 1024.0 / 1024.0 ,
lctx . get_buf_max_mem ( 1 ) / 1024.0 / 1024.0 ) ;
# endif
2023-03-22 05:32:36 +00:00
ggml_free ( ctx0 ) ;
// measure the performance only for the single-token evals
if ( N = = 1 ) {
lctx . t_eval_us + = ggml_time_us ( ) - t_start_us ;
lctx . n_eval + + ;
}
2023-03-25 14:34:23 +00:00
else if ( N > 1 ) {
lctx . t_p_eval_us + = ggml_time_us ( ) - t_start_us ;
lctx . n_p_eval + = N ;
}
2023-03-22 05:32:36 +00:00
return true ;
}
//
// tokenizer
//
static size_t utf8_len ( char src ) {
const size_t lookup [ ] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 2 , 2 , 3 , 4 } ;
uint8_t highbits = static_cast < uint8_t > ( src ) > > 4 ;
return lookup [ highbits ] ;
}
struct llama_sp_symbol {
using index = int ;
index prev ;
index next ;
const char * text ;
size_t n ;
} ;
struct llama_sp_bigram {
struct comparator {
bool operator ( ) ( llama_sp_bigram & l , llama_sp_bigram & r ) {
return ( l . score < r . score ) | | ( l . score = = r . score & & l . left > r . left ) ;
}
} ;
using queue_storage = std : : vector < llama_sp_bigram > ;
using queue = std : : priority_queue < llama_sp_bigram , queue_storage , comparator > ;
llama_sp_symbol : : index left ;
llama_sp_symbol : : index right ;
float score ;
size_t size ;
} ;
// original implementation:
// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
struct llama_tokenizer {
llama_tokenizer ( const llama_vocab & vocab ) : vocab_ ( vocab ) { }
void tokenize ( const std : : string & text , std : : vector < llama_vocab : : id > & output ) {
// split string into utf8 chars
int index = 0 ;
size_t offs = 0 ;
while ( offs < text . size ( ) ) {
llama_sp_symbol sym ;
size_t char_len = std : : min ( text . size ( ) - offs , utf8_len ( text [ offs ] ) ) ;
sym . text = text . c_str ( ) + offs ;
sym . n = char_len ;
offs + = char_len ;
sym . prev = index - 1 ;
sym . next = offs = = text . size ( ) ? - 1 : index + 1 ;
index + + ;
symbols_ . emplace_back ( std : : move ( sym ) ) ;
}
// seed the work queue with all possible 2-character tokens.
for ( size_t i = 1 ; i < symbols_ . size ( ) ; + + i ) {
try_add_bigram ( i - 1 , i ) ;
}
// keep substituting the highest frequency pairs for as long as we can.
while ( ! work_queue_ . empty ( ) ) {
auto bigram = work_queue_ . top ( ) ;
work_queue_ . pop ( ) ;
auto & left_sym = symbols_ [ bigram . left ] ;
auto & right_sym = symbols_ [ bigram . right ] ;
// if one of the symbols already got merged, skip it.
if ( left_sym . n = = 0 | | right_sym . n = = 0 | |
left_sym . n + right_sym . n ! = bigram . size ) {
continue ;
}
// merge the right sym into the left one
left_sym . n + = right_sym . n ;
right_sym . n = 0 ;
//printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
// remove the right sym from the chain
left_sym . next = right_sym . next ;
if ( right_sym . next > = 0 ) {
symbols_ [ right_sym . next ] . prev = bigram . left ;
}
// find more substitutions
try_add_bigram ( left_sym . prev , bigram . left ) ;
try_add_bigram ( bigram . left , left_sym . next ) ;
}
for ( int i = 0 ; i ! = - 1 ; i = symbols_ [ i ] . next ) {
auto & symbol = symbols_ [ i ] ;
auto token = vocab_ . token_to_id . find ( std : : string ( symbol . text , symbol . n ) ) ;
if ( token = = vocab_ . token_to_id . end ( ) ) {
// output any symbols that did not form tokens as bytes.
for ( int j = 0 ; j < ( int ) symbol . n ; + + j ) {
llama_vocab : : id token_id = static_cast < uint8_t > ( symbol . text [ j ] ) + 3 ;
output . push_back ( token_id ) ;
}
} else {
output . push_back ( ( * token ) . second ) ;
}
}
}
private :
void try_add_bigram ( int left , int right ) {
if ( left = = - 1 | | right = = - 1 ) {
return ;
}
const std : : string text = std : : string ( symbols_ [ left ] . text , symbols_ [ left ] . n + symbols_ [ right ] . n ) ;
auto token = vocab_ . token_to_id . find ( text ) ;
if ( token = = vocab_ . token_to_id . end ( ) ) {
return ;
}
if ( static_cast < size_t > ( ( * token ) . second ) > = vocab_ . id_to_token . size ( ) ) {
return ;
}
const auto & tok_score = vocab_ . id_to_token [ ( * token ) . second ] ;
llama_sp_bigram bigram ;
bigram . left = left ;
bigram . right = right ;
bigram . score = tok_score . score ;
bigram . size = text . size ( ) ;
work_queue_ . push ( bigram ) ;
}
const llama_vocab & vocab_ ;
std : : vector < llama_sp_symbol > symbols_ ;
llama_sp_bigram : : queue work_queue_ ;
} ;
static std : : vector < llama_vocab : : id > llama_tokenize ( const llama_vocab & vocab , const std : : string & text , bool bos ) {
llama_tokenizer tokenizer ( vocab ) ;
std : : vector < llama_vocab : : id > output ;
if ( text . size ( ) = = 0 ) {
return output ;
}
if ( bos ) {
output . push_back ( 1 ) ;
}
tokenizer . tokenize ( text , output ) ;
return output ;
}
//
// sampling
//
2023-03-28 16:48:20 +00:00
static void sample_top_k ( std : : vector < std : : pair < float , llama_vocab : : id > > & logits_id , int top_k ) {
2023-03-22 05:32:36 +00:00
// find the top k tokens
std : : partial_sort (
logits_id . begin ( ) ,
logits_id . begin ( ) + top_k , logits_id . end ( ) ,
2023-03-28 16:48:20 +00:00
[ ] ( const std : : pair < float , llama_vocab : : id > & a , const std : : pair < float , llama_vocab : : id > & b ) {
2023-03-22 05:32:36 +00:00
return a . first > b . first ;
} ) ;
logits_id . resize ( top_k ) ;
}
static llama_vocab : : id llama_sample_top_p_top_k (
llama_context & lctx ,
const std : : vector < llama_vocab : : id > & last_n_tokens ,
int top_k ,
2023-03-28 16:48:20 +00:00
float top_p ,
float temp ,
float repeat_penalty ) {
2023-03-22 05:32:36 +00:00
auto & rng = lctx . rng ;
2023-03-25 18:51:14 +00:00
const int n_logits = lctx . model . hparams . n_vocab ;
2023-03-22 05:32:36 +00:00
2023-03-25 18:51:14 +00:00
const auto & logits = lctx . logits ;
const auto * plogits = logits . data ( ) + logits . size ( ) - n_logits ;
2023-03-22 05:32:36 +00:00
2023-03-28 16:48:20 +00:00
std : : vector < std : : pair < float , llama_vocab : : id > > logits_id ;
2023-03-22 05:32:36 +00:00
logits_id . reserve ( n_logits ) ;
{
2023-03-28 16:48:20 +00:00
const float scale = 1.0f / temp ;
2023-03-22 05:32:36 +00:00
for ( int i = 0 ; i < n_logits ; + + i ) {
// repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
// credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
if ( std : : find ( last_n_tokens . begin ( ) , last_n_tokens . end ( ) , i ) ! = last_n_tokens . end ( ) ) {
// if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
2023-03-28 16:48:20 +00:00
if ( plogits [ i ] < 0.0f ) {
2023-03-25 18:51:14 +00:00
logits_id . push_back ( std : : make_pair ( plogits [ i ] * scale * repeat_penalty , i ) ) ;
2023-03-22 05:32:36 +00:00
} else {
2023-03-25 18:51:14 +00:00
logits_id . push_back ( std : : make_pair ( plogits [ i ] * scale / repeat_penalty , i ) ) ;
2023-03-22 05:32:36 +00:00
}
} else {
2023-03-25 18:51:14 +00:00
logits_id . push_back ( std : : make_pair ( plogits [ i ] * scale , i ) ) ;
2023-03-22 05:32:36 +00:00
}
}
}
sample_top_k ( logits_id , top_k ) ;
2023-03-28 16:48:20 +00:00
float maxl = - std : : numeric_limits < float > : : infinity ( ) ;
2023-03-22 05:32:36 +00:00
for ( const auto & kv : logits_id ) {
maxl = std : : max ( maxl , kv . first ) ;
}
// compute probs for the top k tokens
2023-03-28 16:48:20 +00:00
std : : vector < float > probs ;
2023-03-22 05:32:36 +00:00
probs . reserve ( logits_id . size ( ) ) ;
double sum = 0.0 ;
for ( const auto & kv : logits_id ) {
2023-03-28 16:48:20 +00:00
const float p = expf ( kv . first - maxl ) ;
2023-03-22 05:32:36 +00:00
probs . push_back ( p ) ;
sum + = p ;
}
// normalize the probs
for ( auto & p : probs ) {
p / = sum ;
}
2023-03-28 16:48:20 +00:00
if ( top_p < 1.0 ) {
double cumsum = 0.0 ;
2023-03-22 05:32:36 +00:00
for ( int i = 0 ; i < ( int ) probs . size ( ) ; i + + ) {
cumsum + = probs [ i ] ;
if ( cumsum > = top_p ) {
probs . resize ( i + 1 ) ;
logits_id . resize ( i + 1 ) ;
break ;
}
}
cumsum = 1.0 / cumsum ;
for ( int i = 0 ; i < ( int ) probs . size ( ) ; i + + ) {
probs [ i ] * = cumsum ;
}
}
//printf("\n");
//for (int i = 0; i < (int) 10; i++) {
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
//}
//printf("\n\n");
//exit(0);
std : : discrete_distribution < > dist ( probs . begin ( ) , probs . end ( ) ) ;
int idx = dist ( rng ) ;
return logits_id [ idx ] . second ;
}
//
// quantization
//
// TODO: reuse code from the llama_model_load() somehow
2023-03-28 15:56:03 +00:00
static bool llama_model_quantize_internal ( const std : : string & fname_inp , const std : : string & fname_out , int itype ) {
2023-03-22 05:32:36 +00:00
ggml_type type = GGML_TYPE_Q4_1 ;
switch ( itype ) {
case 2 : type = GGML_TYPE_Q4_0 ; break ;
case 3 : type = GGML_TYPE_Q4_1 ; break ;
default : fprintf ( stderr , " %s: invalid quantization type %d \n " , __func__ , itype ) ; return 1 ;
} ;
if ( type ! = GGML_TYPE_Q4_0 & & type ! = GGML_TYPE_Q4_1 ) {
fprintf ( stderr , " %s: invalid quantization type %d \n " , __func__ , type ) ;
return false ;
}
llama_vocab vocab ;
printf ( " %s: loading model from '%s' \n " , __func__ , fname_inp . c_str ( ) ) ;
auto finp = std : : ifstream ( fname_inp , std : : ios : : binary ) ;
if ( ! finp ) {
fprintf ( stderr , " %s: failed to open '%s' for reading \n " , __func__ , fname_inp . c_str ( ) ) ;
return false ;
}
auto fout = std : : ofstream ( fname_out , std : : ios : : binary ) ;
if ( ! fout ) {
fprintf ( stderr , " %s: failed to open '%s' for writing \n " , __func__ , fname_out . c_str ( ) ) ;
return false ;
}
// verify magic
{
uint32_t magic ;
finp . read ( ( char * ) & magic , sizeof ( magic ) ) ;
if ( magic = = LLAMA_FILE_MAGIC_UNVERSIONED ) {
fprintf ( stderr , " %s: invalid model file '%s' (too old, regenerate your model files!) \n " ,
__func__ , fname_inp . c_str ( ) ) ;
return false ;
}
if ( magic ! = LLAMA_FILE_MAGIC ) {
fprintf ( stderr , " %s: invalid model file '%s' (bad magic) \n " , __func__ , fname_inp . c_str ( ) ) ;
return false ;
}
fout . write ( ( char * ) & magic , sizeof ( magic ) ) ;
uint32_t format_version ;
finp . read ( ( char * ) & format_version , sizeof ( format_version ) ) ;
if ( format_version ! = LLAMA_FILE_VERSION ) {
fprintf ( stderr , " %s: invalid model file '%s' (unsupported format version % " PRIu32 " , expected %d) \n " ,
__func__ , fname_inp . c_str ( ) , format_version , LLAMA_FILE_VERSION ) ;
return false ;
}
fout . write ( ( char * ) & format_version , sizeof ( format_version ) ) ;
}
llama_hparams hparams ;
// load hparams
{
finp . read ( ( char * ) & hparams . n_vocab , sizeof ( hparams . n_vocab ) ) ;
//finp.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
finp . read ( ( char * ) & hparams . n_embd , sizeof ( hparams . n_embd ) ) ;
finp . read ( ( char * ) & hparams . n_mult , sizeof ( hparams . n_mult ) ) ;
finp . read ( ( char * ) & hparams . n_head , sizeof ( hparams . n_head ) ) ;
finp . read ( ( char * ) & hparams . n_layer , sizeof ( hparams . n_layer ) ) ;
finp . read ( ( char * ) & hparams . n_rot , sizeof ( hparams . n_rot ) ) ;
finp . read ( ( char * ) & hparams . f16 , sizeof ( hparams . f16 ) ) ;
printf ( " %s: n_vocab = %d \n " , __func__ , hparams . n_vocab ) ;
printf ( " %s: n_ctx = %d \n " , __func__ , hparams . n_ctx ) ;
printf ( " %s: n_embd = %d \n " , __func__ , hparams . n_embd ) ;
printf ( " %s: n_mult = %d \n " , __func__ , hparams . n_mult ) ;
printf ( " %s: n_head = %d \n " , __func__ , hparams . n_head ) ;
printf ( " %s: n_layer = %d \n " , __func__ , hparams . n_layer ) ;
printf ( " %s: f16 = %d \n " , __func__ , hparams . f16 ) ;
fout . write ( ( char * ) & hparams . n_vocab , sizeof ( hparams . n_vocab ) ) ;
//fout.write((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
fout . write ( ( char * ) & hparams . n_embd , sizeof ( hparams . n_embd ) ) ;
fout . write ( ( char * ) & hparams . n_mult , sizeof ( hparams . n_mult ) ) ;
fout . write ( ( char * ) & hparams . n_head , sizeof ( hparams . n_head ) ) ;
fout . write ( ( char * ) & hparams . n_layer , sizeof ( hparams . n_layer ) ) ;
fout . write ( ( char * ) & hparams . n_rot , sizeof ( hparams . n_rot ) ) ;
fout . write ( ( char * ) & itype , sizeof ( hparams . f16 ) ) ;
}
// load vocab
{
const int32_t n_vocab = hparams . n_vocab ;
if ( n_vocab ! = hparams . n_vocab ) {
fprintf ( stderr , " %s: invalid model file '%s' (bad vocab size %d != %d) \n " ,
__func__ , fname_inp . c_str ( ) , n_vocab , hparams . n_vocab ) ;
return false ;
}
std : : string word ;
vocab . id_to_token . resize ( n_vocab ) ;
for ( int i = 0 ; i < n_vocab ; i + + ) {
uint32_t len ;
finp . read ( ( char * ) & len , sizeof ( len ) ) ;
fout . write ( ( char * ) & len , sizeof ( len ) ) ;
word . resize ( len ) ;
finp . read ( ( char * ) word . data ( ) , len ) ;
fout . write ( ( char * ) word . data ( ) , len ) ;
float score ;
finp . read ( ( char * ) & score , sizeof ( score ) ) ;
fout . write ( ( char * ) & score , sizeof ( score ) ) ;
vocab . token_to_id [ word ] = i ;
auto & tok_score = vocab . id_to_token [ i ] ;
tok_score . tok = word ;
tok_score . score = score ;
}
}
// load weights
{
size_t total_size_org = 0 ;
size_t total_size_new = 0 ;
std : : vector < float > work ;
std : : vector < uint8_t > data_u8 ;
std : : vector < ggml_fp16_t > data_f16 ;
std : : vector < float > data_f32 ;
std : : vector < int64_t > hist_all ( 1 < < 4 , 0 ) ;
while ( true ) {
int32_t n_dims ;
int32_t length ;
int32_t ftype ;
finp . read ( reinterpret_cast < char * > ( & n_dims ) , sizeof ( n_dims ) ) ;
finp . read ( reinterpret_cast < char * > ( & length ) , sizeof ( length ) ) ;
finp . read ( reinterpret_cast < char * > ( & ftype ) , sizeof ( ftype ) ) ;
if ( finp . eof ( ) ) {
break ;
}
int32_t nelements = 1 ;
int32_t ne [ 2 ] = { 1 , 1 } ;
for ( int i = 0 ; i < n_dims ; + + i ) {
finp . read ( reinterpret_cast < char * > ( & ne [ i ] ) , sizeof ( ne [ i ] ) ) ;
nelements * = ne [ i ] ;
}
std : : string name ( length , 0 ) ;
finp . read ( & name [ 0 ] , length ) ;
{
static const char * ftype_str [ ] = { " f32 " , " f16 " , " q4_0 " , " q4_1 " , } ;
printf ( " %48s - [%5d, %5d], type = %6s " , name . data ( ) , ne [ 0 ] , ne [ 1 ] , ftype_str [ ftype ] ) ;
}
// regexes of tensor names to be quantized
const std : : vector < std : : string > k_names = {
" .*weight " ,
} ;
bool quantize = false ;
for ( const auto & s : k_names ) {
if ( std : : regex_match ( name , std : : regex ( s ) ) ) {
quantize = true ;
break ;
}
}
// quantize only 2D tensors
quantize & = ( n_dims = = 2 ) ;
if ( quantize ) {
if ( ftype ! = 0 & & ftype ! = 1 ) {
fprintf ( stderr , " %s: unsupported ftype %d for integer quantization \n " , __func__ , ftype ) ;
return false ;
}
if ( ftype = = 1 ) {
data_f16 . resize ( nelements ) ;
finp . read ( reinterpret_cast < char * > ( data_f16 . data ( ) ) , nelements * sizeof ( ggml_fp16_t ) ) ;
data_f32 . resize ( nelements ) ;
for ( int i = 0 ; i < nelements ; + + i ) {
data_f32 [ i ] = ggml_fp16_to_fp32 ( data_f16 [ i ] ) ;
}
} else {
data_f32 . resize ( nelements ) ;
finp . read ( reinterpret_cast < char * > ( data_f32 . data ( ) ) , nelements * sizeof ( float ) ) ;
}
ftype = itype ;
} else {
const int bpe = ( ftype = = 0 ) ? sizeof ( float ) : sizeof ( uint16_t ) ;
data_u8 . resize ( nelements * bpe ) ;
finp . read ( reinterpret_cast < char * > ( data_u8 . data ( ) ) , nelements * bpe ) ;
}
fout . write ( reinterpret_cast < char * > ( & n_dims ) , sizeof ( n_dims ) ) ;
fout . write ( reinterpret_cast < char * > ( & length ) , sizeof ( length ) ) ;
fout . write ( reinterpret_cast < char * > ( & ftype ) , sizeof ( ftype ) ) ;
for ( int i = 0 ; i < n_dims ; + + i ) {
fout . write ( reinterpret_cast < char * > ( & ne [ i ] ) , sizeof ( ne [ i ] ) ) ;
}
fout . write ( & name [ 0 ] , length ) ;
if ( quantize ) {
printf ( " quantizing .. " ) ;
work . resize ( nelements ) ; // for quantization
size_t cur_size = 0 ;
std : : vector < int64_t > hist_cur ( 1 < < 4 , 0 ) ;
switch ( type ) {
case GGML_TYPE_Q4_0 :
{
2023-03-28 15:56:03 +00:00
cur_size = ggml_quantize_q4_0 ( data_f32 . data ( ) , work . data ( ) , nelements , ne [ 0 ] , hist_cur . data ( ) ) ;
2023-03-22 05:32:36 +00:00
} break ;
case GGML_TYPE_Q4_1 :
{
2023-03-28 15:56:03 +00:00
cur_size = ggml_quantize_q4_1 ( data_f32 . data ( ) , work . data ( ) , nelements , ne [ 0 ] , hist_cur . data ( ) ) ;
2023-03-22 05:32:36 +00:00
} break ;
default :
{
fprintf ( stderr , " %s: unsupported quantization type %d \n " , __func__ , type ) ;
return false ;
}
}
fout . write ( reinterpret_cast < char * > ( work . data ( ) ) , cur_size ) ;
total_size_new + = cur_size ;
printf ( " size = %8.2f MB -> %8.2f MB | hist: " , nelements * sizeof ( float ) / 1024.0 / 1024.0 , cur_size / 1024.0 / 1024.0 ) ;
for ( int i = 0 ; i < ( int ) hist_cur . size ( ) ; + + i ) {
hist_all [ i ] + = hist_cur [ i ] ;
}
for ( int i = 0 ; i < ( int ) hist_cur . size ( ) ; + + i ) {
2023-03-28 16:48:20 +00:00
printf ( " %5.3f " , hist_cur [ i ] / float ( nelements ) ) ;
2023-03-22 05:32:36 +00:00
}
printf ( " \n " ) ;
} else {
printf ( " size = %8.3f MB \n " , data_u8 . size ( ) / 1024.0 / 1024.0 ) ;
fout . write ( reinterpret_cast < char * > ( data_u8 . data ( ) ) , data_u8 . size ( ) ) ;
total_size_new + = data_u8 . size ( ) ;
}
total_size_org + = nelements * sizeof ( float ) ;
}
printf ( " %s: model size = %8.2f MB \n " , __func__ , total_size_org / 1024.0 / 1024.0 ) ;
printf ( " %s: quant size = %8.2f MB \n " , __func__ , total_size_new / 1024.0 / 1024.0 ) ;
{
int64_t sum_all = 0 ;
for ( int i = 0 ; i < ( int ) hist_all . size ( ) ; + + i ) {
sum_all + = hist_all [ i ] ;
}
printf ( " %s: hist: " , __func__ ) ;
for ( int i = 0 ; i < ( int ) hist_all . size ( ) ; + + i ) {
2023-03-28 16:48:20 +00:00
printf ( " %5.3f " , hist_all [ i ] / float ( sum_all ) ) ;
2023-03-22 05:32:36 +00:00
}
printf ( " \n " ) ;
}
}
finp . close ( ) ;
fout . close ( ) ;
return true ;
}
//
// interface implementation
//
struct llama_context * llama_init_from_file (
const char * path_model ,
struct llama_context_params params ) {
ggml_time_init ( ) ;
llama_context * ctx = new llama_context ;
2023-03-22 05:45:00 +00:00
if ( params . seed < = 0 ) {
params . seed = time ( NULL ) ;
}
2023-03-22 05:32:36 +00:00
ctx - > rng = std : : mt19937 ( params . seed ) ;
ctx - > logits_all = params . logits_all ;
2023-03-24 21:17:37 +00:00
ggml_type memory_type = params . f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32 ;
2023-03-22 05:32:36 +00:00
2023-03-24 21:17:37 +00:00
if ( ! llama_model_load ( path_model , * ctx , params . n_ctx , params . n_parts , memory_type ,
2023-03-25 05:26:28 +00:00
params . vocab_only , params . progress_callback ,
params . progress_callback_user_data ) ) {
2023-03-22 05:32:36 +00:00
fprintf ( stderr , " %s: failed to load model \n " , __func__ ) ;
2023-03-24 15:21:01 +00:00
llama_free ( ctx ) ;
2023-03-22 05:32:36 +00:00
return nullptr ;
}
2023-03-24 15:21:01 +00:00
2023-03-24 15:19:05 +00:00
if ( params . use_mlock ) {
char * err ;
if ( ! ggml_mlock ( ctx - > model . ctx , & err ) ) {
fprintf ( stderr , " %s \n " , err ) ;
free ( err ) ;
2023-03-24 15:21:01 +00:00
llama_free ( ctx ) ;
2023-03-24 15:19:05 +00:00
return nullptr ;
}
}
2023-03-22 05:32:36 +00:00
2023-03-24 15:05:13 +00:00
// reserve memory for context buffers
{
2023-03-24 21:17:37 +00:00
if ( ! kv_cache_init ( ctx - > model . hparams , ctx - > model . kv_self , memory_type , ctx - > model . hparams . n_ctx ) ) {
fprintf ( stderr , " %s: kv_cache_init() failed for self-attention cache \n " , __func__ ) ;
llama_free ( ctx ) ;
return nullptr ;
}
{
const size_t memory_size = ggml_nbytes ( ctx - > model . kv_self . k ) + ggml_nbytes ( ctx - > model . kv_self . v ) ;
fprintf ( stderr , " %s: kv self size = %7.2f MB \n " , __func__ , memory_size / 1024.0 / 1024.0 ) ;
}
2023-03-24 15:05:13 +00:00
const auto & hparams = ctx - > model . hparams ;
2023-03-25 18:51:14 +00:00
// resized during inference
2023-03-24 15:05:13 +00:00
if ( params . logits_all ) {
ctx - > logits . reserve ( hparams . n_ctx * hparams . n_vocab ) ;
} else {
ctx - > logits . reserve ( hparams . n_ctx ) ;
}
if ( params . embedding ) {
2023-03-25 18:51:14 +00:00
ctx - > embedding . resize ( hparams . n_embd ) ;
2023-03-24 15:05:13 +00:00
}
2023-03-24 21:17:37 +00:00
ctx - > buf_compute . resize ( MEM_REQ_EVAL . at ( ctx - > model . type ) ) ;
ctx - > buf_scratch [ 0 ] . resize ( MEM_REQ_SCRATCH0 . at ( ctx - > model . type ) ) ;
ctx - > buf_scratch [ 1 ] . resize ( MEM_REQ_SCRATCH1 . at ( ctx - > model . type ) ) ;
2023-03-24 15:05:13 +00:00
}
2023-03-22 05:32:36 +00:00
return ctx ;
}
void llama_free ( struct llama_context * ctx ) {
2023-03-24 21:17:37 +00:00
kv_cache_free ( ctx - > model . kv_self ) ;
2023-03-24 15:21:01 +00:00
if ( ctx - > model . ctx ) {
ggml_free ( ctx - > model . ctx ) ;
}
2023-03-22 05:32:36 +00:00
delete ctx ;
}
int llama_model_quantize (
const char * fname_inp ,
const char * fname_out ,
2023-03-28 15:56:03 +00:00
int itype ) {
if ( ! llama_model_quantize_internal ( fname_inp , fname_out , itype ) ) {
2023-03-22 05:32:36 +00:00
fprintf ( stderr , " %s: failed to quantize \n " , __func__ ) ;
return 1 ;
}
return 0 ;
}
int llama_eval (
struct llama_context * ctx ,
const llama_token * tokens ,
int n_tokens ,
int n_past ,
int n_threads ) {
if ( ! llama_eval_internal ( * ctx , tokens , n_tokens , n_past , n_threads ) ) {
fprintf ( stderr , " %s: failed to eval \n " , __func__ ) ;
return 1 ;
}
return 0 ;
}
int llama_tokenize (
struct llama_context * ctx ,
const char * text ,
llama_token * tokens ,
int n_max_tokens ,
bool add_bos ) {
auto res = llama_tokenize ( ctx - > vocab , text , add_bos ) ;
if ( n_max_tokens < ( int ) res . size ( ) ) {
fprintf ( stderr , " %s: too many tokens \n " , __func__ ) ;
return - ( ( int ) res . size ( ) ) ;
}
for ( size_t i = 0 ; i < res . size ( ) ; i + + ) {
tokens [ i ] = res [ i ] ;
}
return res . size ( ) ;
}
int llama_n_vocab ( struct llama_context * ctx ) {
return ctx - > vocab . id_to_token . size ( ) ;
}
int llama_n_ctx ( struct llama_context * ctx ) {
return ctx - > model . hparams . n_ctx ;
}
2023-03-25 18:51:14 +00:00
int llama_n_embd ( struct llama_context * ctx ) {
return ctx - > model . hparams . n_embd ;
}
2023-03-22 05:32:36 +00:00
float * llama_get_logits ( struct llama_context * ctx ) {
return ctx - > logits . data ( ) ;
}
2023-03-24 15:05:13 +00:00
float * llama_get_embeddings ( struct llama_context * ctx ) {
return ctx - > embedding . data ( ) ;
}
2023-03-22 05:32:36 +00:00
const char * llama_token_to_str ( struct llama_context * ctx , llama_token token ) {
if ( token > = llama_n_vocab ( ctx ) ) {
return nullptr ;
}
return ctx - > vocab . id_to_token [ token ] . tok . c_str ( ) ;
}
llama_token llama_token_bos ( ) {
return 1 ;
}
llama_token llama_token_eos ( ) {
return 2 ;
}
llama_token llama_sample_top_p_top_k (
llama_context * ctx ,
const llama_token * last_n_tokens_data ,
int last_n_tokens_size ,
int top_k ,
2023-03-28 16:48:20 +00:00
float top_p ,
float temp ,
float repeat_penalty ) {
2023-03-22 05:32:36 +00:00
const int64_t t_start_sample_us = ggml_time_us ( ) ;
llama_token result = 0 ;
// TODO: avoid this ...
const auto last_n_tokens = std : : vector < llama_token > ( last_n_tokens_data , last_n_tokens_data + last_n_tokens_size ) ;
result = llama_sample_top_p_top_k (
* ctx ,
last_n_tokens ,
top_k ,
top_p ,
temp ,
repeat_penalty ) ;
ctx - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
ctx - > n_sample + + ;
return result ;
}
void llama_print_timings ( struct llama_context * ctx ) {
const int64_t t_end_us = ggml_time_us ( ) ;
const int32_t n_sample = std : : max ( 1 , ctx - > n_sample ) ;
const int32_t n_eval = std : : max ( 1 , ctx - > n_eval ) ;
2023-03-25 14:34:23 +00:00
const int32_t n_p_eval = std : : max ( 1 , ctx - > n_p_eval ) ;
2023-03-22 05:32:36 +00:00
fprintf ( stderr , " \n " ) ;
2023-03-28 16:48:20 +00:00
fprintf ( stderr , " %s: load time = %8.2f ms \n " , __func__ , ctx - > t_load_us / 1000.0 ) ;
fprintf ( stderr , " %s: sample time = %8.2f ms / %5d runs (%8.2f ms per run) \n " , __func__ , 1e-3 * ctx - > t_sample_us , n_sample , 1e-3 * ctx - > t_sample_us / n_sample ) ;
fprintf ( stderr , " %s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token) \n " , __func__ , 1e-3 * ctx - > t_p_eval_us , n_p_eval , 1e-3 * ctx - > t_p_eval_us / n_p_eval ) ;
fprintf ( stderr , " %s: eval time = %8.2f ms / %5d runs (%8.2f ms per run) \n " , __func__ , 1e-3 * ctx - > t_eval_us , n_eval , 1e-3 * ctx - > t_eval_us / n_eval ) ;
fprintf ( stderr , " %s: total time = %8.2f ms \n " , __func__ , ( t_end_us - ctx - > t_start_us ) / 1000.0 ) ;
2023-03-22 05:32:36 +00:00
}
void llama_reset_timings ( struct llama_context * ctx ) {
ctx - > t_start_us = ggml_time_us ( ) ;
ctx - > t_sample_us = ctx - > n_sample = 0 ;
ctx - > t_eval_us = ctx - > n_eval = 0 ;
2023-03-25 14:34:23 +00:00
ctx - > t_p_eval_us = ctx - > n_p_eval = 0 ;
2023-03-22 05:32:36 +00:00
}
const char * llama_print_system_info ( void ) {
static std : : string s ;
s = " " ;
s + = " AVX = " + std : : to_string ( ggml_cpu_has_avx ( ) ) + " | " ;
s + = " AVX2 = " + std : : to_string ( ggml_cpu_has_avx2 ( ) ) + " | " ;
s + = " AVX512 = " + std : : to_string ( ggml_cpu_has_avx512 ( ) ) + " | " ;
s + = " FMA = " + std : : to_string ( ggml_cpu_has_fma ( ) ) + " | " ;
s + = " NEON = " + std : : to_string ( ggml_cpu_has_neon ( ) ) + " | " ;
s + = " ARM_FMA = " + std : : to_string ( ggml_cpu_has_arm_fma ( ) ) + " | " ;
s + = " F16C = " + std : : to_string ( ggml_cpu_has_f16c ( ) ) + " | " ;
s + = " FP16_VA = " + std : : to_string ( ggml_cpu_has_fp16_va ( ) ) + " | " ;
s + = " WASM_SIMD = " + std : : to_string ( ggml_cpu_has_wasm_simd ( ) ) + " | " ;
s + = " BLAS = " + std : : to_string ( ggml_cpu_has_blas ( ) ) + " | " ;
s + = " SSE3 = " + std : : to_string ( ggml_cpu_has_sse3 ( ) ) + " | " ;
s + = " VSX = " + std : : to_string ( ggml_cpu_has_vsx ( ) ) + " | " ;
return s . c_str ( ) ;
}