mirror of
https://git.adityakumar.xyz/llama.cpp.git
synced 2024-11-08 15:09:44 +00:00
120 lines
4.5 KiB
Markdown
120 lines
4.5 KiB
Markdown
|
# llama.cpp
|
||
|
|
||
|
Inference of [Facebook's LLaMA](https://github.com/facebookresearch/llama) model in pure C/C++
|
||
|
|
||
|
## Description
|
||
|
|
||
|
The main goal is to run the model using 4-bit quantization on a MacBook.
|
||
|
|
||
|
- Plain C/C++ implementation without dependencies
|
||
|
- Apple silicon first-class citizen - optimized via Arm Neon and Accelerate framework
|
||
|
- Mixed F16 / F32 precision
|
||
|
- 4-bit quantization support
|
||
|
- Runs on the CPU
|
||
|
|
||
|
This was hacked in an evening - I have no idea if it works correctly.
|
||
|
|
||
|
So far, I've tested just the 7B model and the generated text starts coherently, but typically degrades significanlty after ~30-40 tokens.
|
||
|
Here is a "typicaly" run:
|
||
|
|
||
|
```java
|
||
|
make -j && ./main -m ./models/7B/ggml-model-q4_0.bin -t 8 -n 128
|
||
|
I llama.cpp build info:
|
||
|
I UNAME_S: Darwin
|
||
|
I UNAME_P: arm
|
||
|
I UNAME_M: arm64
|
||
|
I CFLAGS: -I. -O3 -DNDEBUG -std=c11 -fPIC -pthread -DGGML_USE_ACCELERATE
|
||
|
I CXXFLAGS: -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC -pthread
|
||
|
I LDFLAGS: -framework Accelerate
|
||
|
I CC: Apple clang version 14.0.0 (clang-1400.0.29.202)
|
||
|
I CXX: Apple clang version 14.0.0 (clang-1400.0.29.202)
|
||
|
|
||
|
c++ -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC -pthread main.cpp ggml.o utils.o -o main -framework Accelerate
|
||
|
./main -h
|
||
|
usage: ./main [options]
|
||
|
|
||
|
options:
|
||
|
-h, --help show this help message and exit
|
||
|
-s SEED, --seed SEED RNG seed (default: -1)
|
||
|
-t N, --threads N number of threads to use during computation (default: 4)
|
||
|
-p PROMPT, --prompt PROMPT
|
||
|
prompt to start generation with (default: random)
|
||
|
-n N, --n_predict N number of tokens to predict (default: 128)
|
||
|
--top_k N top-k sampling (default: 40)
|
||
|
--top_p N top-p sampling (default: 0.9)
|
||
|
--temp N temperature (default: 0.8)
|
||
|
-b N, --batch_size N batch size for prompt processing (default: 8)
|
||
|
-m FNAME, --model FNAME
|
||
|
model path (default: models/llama-7B/ggml-model.bin)
|
||
|
|
||
|
main: seed = 1678476633
|
||
|
llama_model_load: loading model from './models/7B/ggml-model-q4_0.bin' - please wait ...
|
||
|
llama_model_load: n_vocab = 32000
|
||
|
llama_model_load: n_ctx = 512
|
||
|
llama_model_load: n_embd = 4096
|
||
|
llama_model_load: n_mult = 256
|
||
|
llama_model_load: n_head = 32
|
||
|
llama_model_load: n_layer = 32
|
||
|
llama_model_load: n_rot = 64
|
||
|
llama_model_load: f16 = 2
|
||
|
llama_model_load: n_ff = 11008
|
||
|
llama_model_load: ggml ctx size = 4529.34 MB
|
||
|
llama_model_load: memory_size = 512.00 MB, n_mem = 16384
|
||
|
llama_model_load: .................................... done
|
||
|
llama_model_load: model size = 4017.27 MB / num tensors = 291
|
||
|
|
||
|
main: prompt: 'If'
|
||
|
main: number of tokens in prompt = 2
|
||
|
1 -> ''
|
||
|
3644 -> 'If'
|
||
|
|
||
|
sampling parameters: temp = 0.800000, top_k = 40, top_p = 0.950000
|
||
|
|
||
|
|
||
|
If you are a fan of the original Star Wars trilogy, then you'll want to see this.
|
||
|
If you don't know your Star Wars lore, this will be a huge eye-opening and you will be a little confusing.
|
||
|
Awesome movie.(end of text)
|
||
|
|
||
|
|
||
|
main: mem per token = 14434244 bytes
|
||
|
main: load time = 1313.77 ms
|
||
|
main: sample time = 6.17 ms
|
||
|
main: predict time = 3271.53 ms / 54.53 ms per token
|
||
|
main: total time = 4797.98 ms
|
||
|
```
|
||
|
|
||
|
## Usage
|
||
|
|
||
|
```bash
|
||
|
# build this repo
|
||
|
git clone https://github.com/ggerganov/llama.cpp
|
||
|
cd llama.cpp
|
||
|
make
|
||
|
|
||
|
# obtain the original LLaMA model weights and place them in ./models
|
||
|
ls ./models
|
||
|
65B 30B 13B 7B tokenizer_checklist.chk tokenizer.model
|
||
|
|
||
|
# convert the 7B model to ggml FP16 format
|
||
|
python3 convert-pth-to-ggml.py models/7B/ 1
|
||
|
|
||
|
# quantize the model to 4-bits
|
||
|
./quantize ./models/7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.bin 2
|
||
|
|
||
|
# run the inference
|
||
|
./main -m ./models/7B/ggml-model-q4_0.bin -t 8 -n 128
|
||
|
```
|
||
|
|
||
|
## Limitations
|
||
|
|
||
|
- Currently, only LLaMA-7B is supported since I haven't figured out how to merge the tensors of the bigger models. However, in theory, you should be able to run 65B on a 64GB MacBook
|
||
|
- Not sure if my tokenizer is correct. There are a few places where we might have a mistake:
|
||
|
- https://github.com/ggerganov/llama.cpp/blob/26c084662903ddaca19bef982831bfb0856e8257/convert-pth-to-ggml.py#L79-L87
|
||
|
- https://github.com/ggerganov/llama.cpp/blob/26c084662903ddaca19bef982831bfb0856e8257/utils.h#L65-L69
|
||
|
In general, it seems to work, but I think it fails for unicode character support. Hopefully, someone can help with that
|
||
|
- I don't know yet how much the quantization affects the quality of the generated text
|
||
|
- Probably the token sampling can be improved
|
||
|
- No Windows support
|
||
|
- x86 quantization support [not yet ready](https://github.com/ggerganov/ggml/pull/27). Basically, you want to run this on Apple Silicon
|
||
|
|